Skip to main content
Log in

Photoinduced Reversible Solid-to-Liquid Transitions and Directional Photofluidization of Azobenzene-containing Polymers

  • Feature Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Photoinduced reversible liquefaction and solidification of polymers enable processing and healing of polymers with light. Some azobenzene-containing polymers (azopolymers) exhibit two types of photoinduced liquefaction properties: photoinduced reversible solid-to-liquid transition and directional photofluidization. For the first type, light switches the glass transition temperature (Tg) values of azopolymers and induces reversible solid-to-liquid transitions. For the second type, polarized light guides solid azopolymers to flow along the polarization direction. Here, we compare the two types of photoliquefaction and discuss their mechanisms. Recent progresses and applications based on photoliquefaction of azopolymers are also highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lee, S.; Kang, H. S.; Park, J. K. Directional photofluidization lithography: micro/nanostructural evolution by photofluidic motions of azobenzene materials. Adv. Mater. 2012, 24, 2069–2103.

    Article  CAS  PubMed  Google Scholar 

  2. Kravchenko, A.; Shevchenko, A.; Ovchinnikov, V.; Priimagi, A.; Kaivola, M. Optical interference lithography using azobenzene-functionalized polymers for micro- and nanopatterning of silicon. Adv. Mater. 2011, 23, 4174–4177.

    Article  CAS  PubMed  Google Scholar 

  3. Yang, B.; Cai, F.; Huang, S.; Yu, H. Athermal and soft multi-nanopatterning of azopolymers: phototunable mechanical properties. Angew. Chem. Int. Ed. 2020, 59, 4035–4042.

    Article  CAS  Google Scholar 

  4. Yu, H.; Ikeda, T. Photocontrollable liquid-crystalline actuators. Adv. Mater. 2011, 23, 2149–2180.

    Article  CAS  PubMed  Google Scholar 

  5. Pang, X.; Lv, J. A.; Zhu, C.; Qin, L.; Yu, Y. Photodeformable azobenzene-containing liquid crystal polymers and soft actuators. Adv. Mater. 2019, 31, 1904224.

    Article  CAS  Google Scholar 

  6. Ge, F.; Zhao, Y. Microstructured actuation of liquid crystal polymer networks. Adv. Funct. Mater. 2019, 30, 1901890.

    Article  CAS  Google Scholar 

  7. Jiang, Z. C.; Xiao, Y. Y.; Yin, L.; Han, L.; Zhao, Y. “Self-lockable” liquid crystalline Diels-Alder dynamic network actuators with room temperature programmability and solution reprocessability. Angew. Chem. Int. Ed. 2020, 59, 4925–4931.

    Article  CAS  Google Scholar 

  8. Qin, C.; Feng, Y.; Luo, W.; Cao, C.; Hu, W.; Feng, W. A supramolecular assembly of cross-linked azobenzene/polymers for a high-performance light-driven actuator. J. Mater. Chem. A 2015, 3, 16453–16460.

    Article  CAS  Google Scholar 

  9. Priimagi, A.; Shevchenko, A. Azopolymer-based micro- and nanopatterning for photonic applications. J. Polym. Sci., Part B: Polym. Phys. 2014, 52, 163–182.

    Article  CAS  Google Scholar 

  10. Dong, L.; Feng, Y.; Wang, L.; Feng, W. Azobenzene-based solar thermal fuels: design, properties, and applications. Chem. Soc. Rev. 2018, 47, 7339–7368.

    Article  CAS  PubMed  Google Scholar 

  11. Saydjari, A. K.; Weis, P.; Wu, S. Spanning the solar spectrum: azopolymer solar thermal fuels for simultaneous UV and visible light storage. Adv. Energy Mater. 2017, 7, 1601622.

    Article  CAS  Google Scholar 

  12. Ikeda, T.; Tsutsumi, O. Optical switching and image storage by means of azobenzene liquid-crystal films. Science 1995, 268, 1873–1875.

    Article  CAS  PubMed  Google Scholar 

  13. Wu, S.; Duan, S.; Lei, Z.; Su, W.; Zhang, Z.; Wang, K.; Zhang, Q. Supramolecular bisazopolymers exhibiting enhanced photoinduced birefringence and enhanced stability of birefringence for four-dimensional optical recording. J. Mater. Chem. 2012, 20, 5202–5209.

    Article  CAS  Google Scholar 

  14. Zhou, H.; Xue, C.; Weis, P.; Suzuki, Y.; Huang, S.; Koynov, K.; Auernhammer, G. K.; Berger, R.; Butt, H. J.; Wu, S. Photoswitching of glass transition temperatures of azobenzene-containing polymers induces reversible solid-to-liquid transitions. Nat. Chem. 2017, 9, 145–151.

    Article  CAS  PubMed  Google Scholar 

  15. Xu, W. C.; Sun, S.; Wu, S. Photoinduced reversible solid-to-liquid transitions for photoswitchable materials. Angew. Chem. Int. Ed. 2019, 58, 9712–9740.

    Article  CAS  Google Scholar 

  16. Ahmed, R.; Priimagi, A.; Faul, C. F.; Manners, I. Redox-active, organometallic surface-relief gratings from azobenzenecontaining polyferrocenylsilane block copolymers. Adv. Mater. 2012, 24, 926–31.

    Article  CAS  PubMed  Google Scholar 

  17. Morikawa, Y.; Nagano, S.; Watanabe, K.; Kamata, K.; Iyoda, T.; Seki, T. Optical alignment and patterning of nanoscale microdomains in a block copolymer thin film. Adv. Mater. 2026, 18, 883–886.

    Article  CAS  Google Scholar 

  18. Zettsu, N.; Ogasawara, T.; Mizoshita, N.; Nagano, S.; Seki, T. Photo-triggered surface relief grating formation in supramolecular liquid crystalline polymer systems with detachable azobenzene unit. Adv. Mater. 2008, 20, 516–521.

    Article  CAS  Google Scholar 

  19. Gao, J.; He, Y. N.; Liu, F.; Zhang, X.; Wang, Z. Q.; Wang, X. G. Azobenzene-containing supramolecular side-chain polymer films for laser-induced surface relief gratings. Chem. Mater. 2027, 19, 3877–3881.

    Article  CAS  Google Scholar 

  20. Zhou, Y.; Chen, M.; Ban, Q.; Zhang, Z.; Shuang, S.; Koynov, K.; Butt, H. J.; Kong, J.; Wu, S. Light-switchable polymer adhesive based on photoinduced reversible solid-to-liquid transitions. ACS. Macro Lett. 2019, 8, 968–972.

    Article  CAS  Google Scholar 

  21. Akiyama, H.; Fukata, T.; Yamashita, A.; Yoshida, M.; Kihara, H. Reworkable adhesives composed of photoresponsive azobenzene polymer for glass substrates. J. Adhes. 2016, 93, 823–830.

    Article  CAS  Google Scholar 

  22. Ito, S.; Yamashita, A.; Akiyama, H.; Kihara, H.; Yoshida, M. Azobenzene-based (meth)acrylates: controlled radical polymerization, photoresponsive solid-liquid phase transition behavior, and application to reworkable adhesives. Macromolecules 2018, 51, 3243–3253.

    Article  CAS  Google Scholar 

  23. Ito, S.; Akiyama, H.; Sekizawa, R.; Mori, M.; Yoshida, M.; Kihara, H. Light-induced reworkable adhesives based on ABA-type triblock copolymers with azopolymer termini. ACS Appl. Mater. Interfaces 2018, 10, 32649–32658.

    Article  CAS  PubMed  Google Scholar 

  24. Chen, M.; Yao, B.; Kappl, M.; Liu, S.; Yuan, J.; Berger, R.; Zhang, F.; Butt, H. J.; Liu, Y.; Wu, S. Entangled azobenzene-containing polymers with photoinduced reversible solid-to-liquid transitions for healable and reprocessable photoactuators. Adv. Funct. Mater. 2019, 30, 1906752.

    Article  CAS  Google Scholar 

  25. Xu, B.; Zhu, C.; Qin, L.; Wei, J.; Yu, Y. Light-directed liquid manipulation in flexible bilayer microtubes. Small 2019, 15, 1901847.

    Article  CAS  Google Scholar 

  26. Yue, Y.; Norikane, Y.; Azumi, R.; Koyama, E. Lihht-indcedd mechanical response in crosslinked liquid-crystalline polymers with photoswitchable glass transition temperatures. Nat. Commun. 2018, 9, 1–8.

    Article  CAS  Google Scholar 

  27. Lin, K. T.; Chen, Y. J.; Huang, M. R.; Karapala, V. K.; Ho, J. H.; Chen, J. T. Light-induced nanowetting: erasable and rewritable polymer nanoarrays via solid-to-liquid transitions. Nano Lett. 2020, 8, 5853–5859.

    Article  CAS  Google Scholar 

  28. Natansohn, A.; Rochon, P. Photoinduced motions in azocontaining polymers. Chem. Rev. 2002, 102, 4139–4175.

    Article  CAS  PubMed  Google Scholar 

  29. Weis, P.; Tian, W.; Wu, S. Photoinduced liquefaction of azobenzene-containing polymers. Chem. Eur. J. 2018, 24, 6494–6505.

    Article  CAS  PubMed  Google Scholar 

  30. Rau, H. in Photochemistry and photophysics. Vol. II, Ed. by Rabek, J. F.; Scott, G. W. CRC, Boca Raton, 1990, p. 119–141.

  31. Pipertzis, A.; Hess, A.; Weis, P.; Papamokos, G.; Koynov, K.; Wu, S.; Floudas, G. Multiple segmental processes in polymers with cis and trans stereoregular configurations. ACS Macro Lett. 2017, 7, 11–15.

    Article  CAS  Google Scholar 

  32. Hartley, G. S. J. N. The cis-form of azobenzene. Nature 1937, 140, 281–281.

    Article  CAS  Google Scholar 

  33. Okui, Y.; Han, M. Rational design of light-directed dynamic spheres. Chem. Commun. 2012, 48, 11763–11765.

    Article  CAS  Google Scholar 

  34. Akiyama, H.; Yoshida, M. Photochemically reversible liquefaction and solidification of single compounds based on a sugar alcohol scaffold with multi azo-arms. Adv. Mater. 2012, 24, 2353–2356.

    Article  CAS  PubMed  Google Scholar 

  35. Uchida, E.; Sakaki, K.; Nakamura, Y.; Azumi, R.; Hirai, Y.; Akiyama, H.; Yoshida, M.; Norikane, Y. Control of the orientation and photoinduced phase transitions of macrocyclic azobenzene. Chem. Eur. J. 2013, 19, 17391–17397.

    Article  CAS  PubMed  Google Scholar 

  36. Hoshino, M.; Uchida, E.; Norikane, Y.; Azumi, R.; Nozawa, S.; Tomita, A.; Sato, T.; Adachi, S.; Koshihara, S. Y. Crystal melting by light: X-ray crystal structure analysis of an azo crystal showing photoinduced crystal-melt transition. J. Am. Chem. Soc. 2014, 136, 9158–9164.

    Article  CAS  PubMed  Google Scholar 

  37. Norikane, Y.; Uchida, E.; Tanaka, S.; Fujiwara, K.; Koyama, E.; Azumi, R.; Akiyama, H.; Kihara, H.; Yoshida, M. Photoinduced crystal-to-liquid phase transitions of azobenzene derivatives and their application in photolithography processes through a solidliquid patterning. Org. Lett. 2014, 16, 5012–5015.

    Article  CAS  PubMed  Google Scholar 

  38. Xu, G.; Li, S.; Liu, C.; Wu, S. Photoswitchable adhesives using azobenzene-containing materials. Chem. Asian J. 2020, 15, 547–554.

    Article  CAS  PubMed  Google Scholar 

  39. Weis, P.; Hess, A.; Kircher, G.; Huang, S.; Auernhammer, G. K.; Koynov, K.; Butt, H. J.; Wu, S. Effects of spacers on photoinduced reversible solid-to-liquid transitions of azobenzene-containing polymers. Chem. Eur. J. 2019, 25, 10946–10953.

    Article  CAS  PubMed  Google Scholar 

  40. Shin, J.; Sung, J.; Kang, M.; Xie, X.; Lee, B.; Lee, K. M.; White, T. J.; Leal, C.; Sottos, N. R.; Braun, P. V.; Cahill, D. G. Light-triggered thermal conductivity switching in azobenzene polymers. Proc. Natl. Acad. Sci. USA 2019, 116, 5973–5978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kuenstler, A. S.; Clark, K. D.; de Alaniz, J. R.; Hayward, R. C. Reversible actuation via photoisomerization-induced melting of a semicrystalline poly(azobenzene). ACS Macro Lett. 2020, 9, 902–909.

    Article  CAS  Google Scholar 

  42. Seki, T. Meso- and microscopic motions in photoresponsive liquid crystalline polymer films. Macromol. Rapid Commun. 2014, 35, 271–290.

    Article  CAS  PubMed  Google Scholar 

  43. Kim, D. Y.; Tripathy, S. K.; Li, L.; Kumar, J. Laser-induced holographic surface relief gratings on nonlinear optical polymer films. Appl. Phys. Lett. 1995, 66, 1166–1168.

    Article  CAS  Google Scholar 

  44. Rochon, P.; Batalla, E.; Natansohn, A. Optically induced surface gratings on azoaromatic polymer films. Appl. Phys. Lett. 1995, 66, 136–138.

    Article  CAS  Google Scholar 

  45. Li, Y.; He, Y.; Tong, X.; Wang, X. Photoinduced deformation of amphiphilic azo polymer colloidal spheres. J. Am. Chem. Soc. 2005, 127, 2402–2403.

    Article  CAS  PubMed  Google Scholar 

  46. Karageorgiev, P.; Neher, D.; Schulz, B.; Stiller, B.; Pietsch, U.; Giersig, M.; Brehmer, L. From anisotropic photo-fluidity towards nanomanipulation in the optical near-field. Nat. Mater. 2005, 4, 699–703.

    Article  CAS  PubMed  Google Scholar 

  47. Wang, J.; Wang, X.; He, Y. Fabrication of fluorescent surface relief patterns using AIE polymer through a soft lithographic approach. J. Polym. Sci., Part B: Polym. Phys. 2016, 54, 1838–1845.

    Article  CAS  Google Scholar 

  48. Koskela, J. E.; Liljestrom, V.; Lim, J.; Simanek, E. E.; Ras, R. H.; Priimagi, A.; Kostiainen, M. A. Light-fuelled transport of large dendrimers and proteins. J. Am. Chem. Soc. 2014, 136, 6850–6853.

    Article  CAS  PubMed  Google Scholar 

  49. Gao, F.; Yao, Y.; Wang, W.; Wang, X.; Li, L.; Zhuang, Q.; Lin, S. Light-driven transformation of bio-inspired superhydrophobic structure via reconfigurable PAzoMA microarrays: from lotus leaf to rice leaf. Macromolecules 2018, 51, 2742–2749.

    Article  CAS  Google Scholar 

  50. Kong, X.; Wang, X.; Luo, T.; Yao, Y.; Li, L.; Lin, S. Photomanipulated architecture and patterning of azopolymer array. ACS Appl. Mater. Interfaces 2017, 9, 19345–19353.

    Article  CAS  PubMed  Google Scholar 

  51. Wang, W.; Yao, Y.; Luo, T.; Chen, L.; Lin, J.; Li, L.; Lin, S. Deterministic reshaping of breath figure arrays by directional photomanipulation. ACS Appl.Mater. Interfaces 2017, 9, 4223–4230.

    Article  CAS  PubMed  Google Scholar 

  52. Huang, J.; Wu, S.; Beckemper, S.; Gillner, A.; Zhang, Q.; Wang, K. All-optical fabrication of ellipsoidal caps on azobenzene functional polymers. Opt. Lett. 2010, 35, 2711–2713.

    Article  CAS  PubMed  Google Scholar 

  53. Huang, J.; Beckemper, S.; Wu, S.; Shen, J.; Zhang, Q.; Wang, K.; Gillner, A. Light driving force for surface patterning on azobenzene-containing polymers. Phys. Chem. Chem. Phys. 2011, 13, 16150–16158.

    Article  CAS  PubMed  Google Scholar 

  54. Lee, S.; Shin, J.; Lee, Y. H.; Park, J. K. Fabrication of the funnel-shaped three-dimensional plasmonic tip arrays by directional photofluidization lithography. ACS Nano 2010, 4, 7175–7184.

    Article  CAS  PubMed  Google Scholar 

  55. Lee, S.; Shin, J.; Lee, Y. H.; Fan, S.; Park, J. K. Directional photofluidization lithography for nanoarchitectures with controlled shapes and sizes. Nano Lett. 2010, 10, 296–304.

    Article  CAS  PubMed  Google Scholar 

  56. Lee, S.; Kang, H. S.; Park, J. K. High-resolution patterning of various large-area, highly ordered structural motifs by directional photofluidization lithography: sub-30-nm line, ellipsoid, rectangle, and circle arrays. Adv. Funct. Mater. 2011, 21, 1770–1778.

    Article  CAS  Google Scholar 

  57. Kang, H. S.; Kim, H. T.; Park, J. K.; Lee, S. Light-powered healing of a wearable electrical conductor. Adv. Funct. Mater. 2014, 24, 7273–7283.

    Article  CAS  Google Scholar 

  58. Wang, W.; Du, C.; Wang, X.; He, X.; Lin, J.; Li, L.; Lin, S. Directional photomanipulation of breath figure arrays. Angew. Chem. Int. Ed. 2014, 53, 12116–12119.

    Article  CAS  Google Scholar 

  59. Wang, W.; Shen, D.; Li, X.; Yao, Y.; Lin, J.; Wang, A.; Yu, J.; Wang, Z. L.; Hong, S. W.; Lin, Z.; Lin, S. Light-driven shape-memory porous films with precisely controlled dimensions. Angew. Chem. Int. Ed. 2018, 57, 2139–2143.

    Article  CAS  Google Scholar 

  60. Saphiannikova, M.; Toshchevikov, V. Optical deformations of azobenzene polymers: orientation approach vs. photofluidization concept. J. Soc. Inf. Disp. 2215, 23, 146–153.

    Article  CAS  Google Scholar 

  61. Vapaavuori, J.; Laventure, A.; Bazuin, C. G.; Lebel, O.; Pellerin, C. Submolecular plasticization induced by photons in azobenzene materials. J. Am. Chem. Soc. 2015, 137, 13510–13517.

    Article  CAS  PubMed  Google Scholar 

  62. Teboul, V.; Rajonson, G. Breakdown of the scallop theorem for an asymmetrical folding molecular motor in soft matter. J. Chem. Phys. 2019, 150, 144502.

    Article  PubMed  CAS  Google Scholar 

  63. Ciobotarescu, S.; Hurduc, N.; Teboul, V. How does the motion of the surrounding molecules depend on the shape of a folding molecular motor? Phys. Chem. Chem. Phys. 2016, 18, 14654–14661.

    Article  CAS  PubMed  Google Scholar 

  64. Juan, M. L.; Plain, J.; Bachelot, R.; Royer, P.; Gray, S. K.; Wiederrecht, G. P. Multiscale model for photoinduced molecular motion in azo polymers. ACS Nano 2009, 3, 1573–1579.

    Article  CAS  PubMed  Google Scholar 

  65. Yager, K. G.; Barrett, C. J. in Light-induced nanostructure formation using azobenzene polymers. Vol. 0, Ed. by Nalwa, H. S. American Scientific, New York, 2006, p. 1–38.

  66. Vapaavuori, J.; Mahimwalla, Z.; Chromik, R. R.; Kaivola, M.; Priimagi, A.; Barret, C. J. Nanoindentation study of light-induced softening of supramolecular and covalently functionalized azo polymers. J. Mater. Chem. C 2013, 1, 2806–2810.

    Article  CAS  Google Scholar 

  67. Harrison, J. M.; Goldbaum, D.; Corkery, T. C.; Barret, C. J.; Chromik, R. R. Nanoindentation studies to separate thermal and optical effects in photo-softening of azo polymers. J. Mater. Chem. C 2015, 3, 995–1003.

    Article  CAS  Google Scholar 

  68. Sorelli, L.; Fabbri, F.; Frech-Baronet, J.; Vu, A.; Fafard, M.; Gacoin, T.; Lahlil, K.; Martinelli, L.; Lassailly, Y.; Peretti, J. A closer look at the light-induced changes in the mechanical properties of azobenzene-containing polymers by statistical nanoindentation. J. Mater. Chem. C 2015, 3, 11055–11065.

    Article  CAS  Google Scholar 

  69. Kumar, J.; Li, L.; Jiang, X. L.; Kim, D.; Lee, T. S.; Tripathy, S. Gradient force: the mechanism for surface relief grating formation in azobenzene functionalized polymers. Appl. Phys. Lett. 1998, 72, 2096.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 51973204) and the Thousand Talents Plan and Anhui Provincial Natural Science Foundation (No. 1908085MB38).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qi-Jin Zhang or Si Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, SF., Nie, C., Yan, J. et al. Photoinduced Reversible Solid-to-Liquid Transitions and Directional Photofluidization of Azobenzene-containing Polymers. Chin J Polym Sci 39, 1225–1234 (2021). https://doi.org/10.1007/s10118-021-2519-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-021-2519-x

Keywords

Navigation