Skip to main content
Log in

Stochastic Turing Pattern Formation in a Model with Active and Passive Transport

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We investigate Turing pattern formation in a stochastic and spatially discretized version of a reaction–diffusion–advection (RDA) equation, which was previously introduced to model synaptogenesis in C. elegans. The model describes the interactions between a passively diffusing molecular species and an advecting species that switches between anterograde and retrograde motor-driven transport (bidirectional transport). Within the context of synaptogenesis, the diffusing molecules can be identified with the protein kinase CaMKII and the advecting molecules as glutamate receptors. The stochastic dynamics evolves according to an RDA master equation, in which advection and diffusion are both modeled as hopping reactions along a one-dimensional array of chemical compartments. Carrying out a linear noise approximation of the RDA master equation leads to an effective Langevin equation, whose power spectrum provides a means of extending the definition of a Turing instability to stochastic systems, namely in terms of the existence of a peak in the power spectrum at a nonzero spatial frequency. We thus show how noise can significantly extend the range over which spontaneous patterns occur, which is consistent with previous studies of RD systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arpag G, Norris SR, Mousavi SI, Soppina V, Verhey KJ, Hancock WO, Tuzel E (2019) Motor dynamics underlying cargo transport by pairs of Kinesin-1 and Kinesin-3 Motors. Biophys J 116(6):1115–1126

    Article  Google Scholar 

  • Biancalani T, Fanelli D, Di Patti F (2010) Stochastic Turing patterns in the Brusselator model. Phys Rev E 81:046215

    Article  Google Scholar 

  • Biancalani T, Jafarpour F, Goldenfeld N (2017) Giant amplification of noise in fluctuation-induced pattern formation. Phys Rev Lett 118:018101

    Article  Google Scholar 

  • Bressloff PC (2014) Stochastic processes in cell biology. Springer, New York

    Book  Google Scholar 

  • Brooks HA, Bressloff PC (2016) A mechanism for Turing pattern formation with active and passive transport. SIAM J Appl Dyn Syst 15(4):1823–1843

    Article  MathSciNet  Google Scholar 

  • Brooks HA, Bressloff PC (2017) Turing mechanism for homeostatic control of synaptic density during C. elegans growth. Phys Rev E 96:012413

    Article  Google Scholar 

  • Butler TC, Goldenfeld N (2009) Robust ecological pattern formation induced by demographic noise. Phys Rev E 80:030902(R)

    Article  Google Scholar 

  • Butler TC, Goldenfeld N (2011) Fluctuation-driven Turing patterns. Phys Rev E 84:011112

    Article  Google Scholar 

  • Cross MC, Greenside HS (2009) Pattern formation and dynamics in non-equilibrium systems. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • De Anna PD, Patti FD, Fanelli D, McKane AJ, Dauxois T (2010) Spatial model of autocatalytic reactions. Phys Rev E 81:056110

    Article  Google Scholar 

  • Di Patti F, Lavacchi L, Arbel-Goren R, Schein-Lubomirsky L, Fanelli D, Stavans J (2018) Robust stochastic Turing patterns in the development of a one-dimensional cyanobacterial organism. Plos Biol 16(5):e2004877

    Article  Google Scholar 

  • Gierer A, Meinhardt H (1972) A theory of biological pattern formation. Kybernetik 12:30–39

    Article  Google Scholar 

  • Hanus C, Schuman EM (2013) Proteostasis in complex dendrites. Nature Rev Neurosci 14:638–648

    Article  Google Scholar 

  • Hillen T (1996) A Turing model with correlated random walk. J Math Biol 35:49–72

    Article  MathSciNet  Google Scholar 

  • Hoerndli FJ, Maxfield DA, Brockie PJ, Mellem JE, Jensen E, Wang R, Madsen DM, Maricq AV (2013) Kinesin-1 regulates synaptic strength by mediating the delivery, removal, and redistribution of AMPA receptors. Neuron 80:1421–1437

    Article  Google Scholar 

  • Hoerndli FJ, Wang R, Mellem JE, Kallarackal A, Brockie PJ, Thacker C, Jensen E, Madsen DM, Maricq AV (2015) Neuronal activity and CaMKII regulate kinesin-mediated transport of synaptic AMPARs. Neuron 86:457–474

    Article  Google Scholar 

  • Kariga D, Martinic KM, Lud T, DeLateure NA, Goldenfeld N, Weiss R (2018) Stochastic Turing patterns in a synthetic bacterial population. PNAS 115(26):6572–6577

    Article  Google Scholar 

  • Lugo CA, McKane AJ (2008) Quasicycles in a spatial predator–prey model. Phys Rev E 78:051911

    Article  MathSciNet  Google Scholar 

  • McKane AJ, Biancalani T, Rogers T (2014) Stochastic pattern formation and spontaneous polarisation: the linear noise approximation and beyond. Bull Math Biol 76:895–921

    Article  MathSciNet  Google Scholar 

  • Monteiro MI, Ahlawat S, Kowalski JR, Malkin E, Koushika SP, Juoa P (2012) The kinesin-3 family motor KLP-4 regulates anterograde trafficking of GLR-1 glutamate receptors in the ventral nerve cord of Caenorhabditis elegans. Mol Biol Cell 23:3647–3662

    Article  Google Scholar 

  • Murray JD (2008) Mathematical biology, vol II, 3rd edn. Springer, Berlin

    MATH  Google Scholar 

  • Rongo C, Kaplan JM (1999) CaMKII regulates the density of central glutamatergic synapses in vivo. Nature 402:195–199

    Article  Google Scholar 

  • Schumacher LJ, Woolley TE, Baker RE (2013) Noise-induced temporal dynamics in Turing systems. Phys Rev E 87:042719

    Article  Google Scholar 

  • Turing AM (1952) The chemical basis of morphogenesis. Philos Trans Roy Soc Lond Ser B Biol Sci 237:37–72

    MathSciNet  MATH  Google Scholar 

  • Walgraef D (1997) Pattern formation with examples from physics, chemistry, and materials science. Springer, New York

    Google Scholar 

  • Woolley TE, Baker RE, Gaffney EA, Maini PK (2011) Stochastic reaction and diffusion on growing compartments: understanding the breakdown of robust pattern formation. Phys Rev E 84:046216

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul C. Bressloff.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Exact Forms of the Macroscopic and Mesoscopic Models

Exact Forms of the Macroscopic and Mesoscopic Models

1.1 Reaction Components of Macroscopic Model

Multiplying \({\mathbf {L}}\) and \({\mathbf {F}}({\mathbf {u}})\) in Sect. 2 yields

$$\begin{aligned} {\mathbf {L}} {\mathbf {F}}({\mathbf {u}}) = \left[ \begin{array}{c} \beta _1 - \mu _1 u_1 + \frac{\rho _1 u_1^2}{u_2+u_3} \\ \frac{\beta _2}{2} - \mu _2 u_2 + \frac{\rho _2 u_1^2}{2} -\alpha u_2 + \alpha u_3\\ \frac{\beta _2}{2} - \mu _2 u_3 + \frac{\rho _2 u_1^2}{2} +\alpha u_2 - \alpha u_3 \end{array}\right] . \end{aligned}$$
(A.1)

Since this multiplication is the local reaction component of the macroscopic model, we have

$$\begin{aligned} {\mathbf {G}}({\mathbf {u}}) = \left[ \begin{array}{c} g_1(u_1,u_2,u_3) \\ g_2(u_1,u_2) -\alpha u_2 + \alpha u_3\\ g_2(u_1,u_3)+\alpha u_2 - \alpha u_3 \end{array}\right] , \end{aligned}$$
(A.2)

where

$$\begin{aligned} g_1(u_1,u_2,u_3) = \beta _1 - \mu _1 u_1 + \frac{\rho _1 u_1^2}{u_2+u_3}, \quad g_2(u_1,u_2) = \frac{\beta _2}{2} - \mu _2 u_2 + \frac{\rho _2 u_1^2}{2}. \end{aligned}$$

Thus, the Jacobian of \({\mathbf {G}}\) at \({\mathbf {u}}^*\) becomes

$$\begin{aligned} \nabla {\mathbf {G}}({\mathbf {u}}^*) = \left[ \begin{array}{c c c} g_{1,1} &{} g_{1,2} &{} g_{1,3} \\ g_{2,1} &{} g_{2,2} -\alpha , &{} g_{2,3} + \alpha \\ g_{2,1} &{} g_{2,3} + \alpha &{} g_{2,2} - \alpha \end{array}\right] , \end{aligned}$$
(A.3)

where the partial derivatives \(g_{1,m} = \left. \partial g_1/\partial u_m\right| _*\) are

$$\begin{aligned} g_{1,1} = -\mu _1 + \frac{2\rho _1 u_1^*}{u_2^* + u_3^*}, \quad g_{1,2} = -\rho _1 \left( \frac{u_1^*}{u_2^* + u_3^*} \right) ^2, \quad g_{1,3} = g_{1,2}, \end{aligned}$$
(A.4)

and \(g_{2,m} = \left. \partial g_2/\partial u_m\right| _*\)

$$\begin{aligned} g_{2,1} = \rho _2 u_1^*, \quad g_{2,2} = -\mu _2, \quad g_{2,3} = 0. \end{aligned}$$
(A.5)

In particular, if \(\beta _1 = \beta _2 = 0\), then the partial derivatives reduce to

$$\begin{aligned} g_{1,1} = \mu _1, \quad g_{1,2} = - \frac{\mu _1^2}{\rho _1}, \quad g_{2,1} = \frac{\mu _2}{\mu _1} \rho _1, \quad g_{2,2} = -\mu _2. \end{aligned}$$
(A.6)

1.2 Characteristic Equation for the Linearized Macroscopic Equations

The linear operator \({\mathcal {L}}(k)\) in the characteristic equation (22) can be reduced to the form

$$\begin{aligned} {\mathcal {L}}(k) = \left[ \begin{array}{c c c} 2\kappa _1 q &{} 0 &{} 0 \\ 0 &{} \kappa _2(q - i \sqrt{1-(1+q)^2}) &{} 0 \\ 0 &{} 0 &{} \kappa _2(q + i \sqrt{1-(1+q)^2}) \end{array}\right] + \nabla {\mathbf {G}}({\mathbf {u}}^*) \end{aligned}$$
(A.7)

in accordance with the substitution \(q = \cos (k) -1\). The corresponding characteristic equation is

$$\begin{aligned} p(q,\lambda ) = -\lambda ^3 + p_2(q) \lambda ^2 + p_1(q) \lambda + p_0(q). \end{aligned}$$

where

$$\begin{aligned} p_j(q) = \sum _{m=0}^2 p_{j,m}q^m. \end{aligned}$$

The coefficients \(p_{j,m}\) are given by

$$\begin{aligned} p_{2,0}&= g_{1,1} + 2g_{2,2} - 2\alpha , \nonumber \\ p_{2,1}&= 2 (\kappa _1 + \kappa _2), \nonumber \\ p_{2,2}&= 0, \end{aligned}$$
(A.8)
$$\begin{aligned} p_{1,0}&= 2\alpha ( g_{1,1} + g_{2,2}) -g_{2,2}^2 -2(g_{1,1}g_{2,2} - g_{1,2} g_{2,1}), \nonumber \\ p_{1,1}&= 2\left[ (\alpha - g_{2,2})(2\kappa _1 + \kappa _2) -g_{1,1}\kappa _2 + \kappa _2^2\right] , \nonumber \\ p_{1,2}&= - 4 \kappa _1 \kappa _2, \end{aligned}$$
(A.9)

and

$$\begin{aligned} p_{0,0}&= (2\alpha - g_{2,2})(2g_{1,2}g_{2,1} - g_{1,1}g_{2,2}), \nonumber \\ p_{0,1}&= -2 \left[ (2\alpha - g_{2,2})g_{2,2} \kappa _1 +(\alpha g_{1,1} - g_{1,1}g_{2,2} + g_{1,2}g_{2,1})\kappa _2 + g_{1,1} \kappa _2^2\right] ,\nonumber \\ p_{0,2}&= -4\kappa _1 \kappa _2(\alpha -g_{2,2}+\kappa _2). \end{aligned}$$
(A.10)

Note that if \(\beta _1 = \beta _2 = 0\), then the coefficients \(p_j(q)\) are independent of \(\rho _1\) and \(\rho _2\). Moreover, Eq. (A.6) implies that the partial derivatives are independent of \(\rho _2\), and only \(g_{1,2}\) and \(g_{2,1}\) depend on \(\rho _1\). However, the latter coefficients always appear in \(p_{j,m}\) as the product \(g_{1,2}g_{2,1} = -\mu _1\mu _2\), which is independent of \(\rho _1\). This establishes the above claim.

The coefficient \(p_j(q)\) also determines the Turing–Hopf bifurcation condition (28)

$$\begin{aligned} p_\text {TH}(q) = p_0(q) + p_1(q)p_2(q) = \sum _{m=0}^3 p_{\text {TH},m} q^m. \end{aligned}$$

In order to investigate its behavior over \(q \in [-2,0]\), we first compute

$$\begin{aligned} p_{\text {TH},0}&= p_{0,0} + p_{1,0}p_{2,0} = -2 (g_{1,1} + g_{2,2}) \nonumber \\&\quad \left[ 2\alpha ^2 - \alpha (g_{1,1}+g_{2,2}) + (g_{1,1} g_{2,2} - g_{1,2} g_{2,1}) + g_{2,2}^2 - 2 \alpha g_{2,2}\right] . \end{aligned}$$
(A.11)

Using the fact that \(g_{2,2} = - \mu _2\) and the stability condition (19)

$$\begin{aligned} g_{1,1} + g_{2,2} <0, \quad g_{1,1}g_{2,2} -g_{1,2}g_{2,1} >0, \end{aligned}$$

one can show \(p_{\text {TH},0}> 0\). Similarly, we find the sign of higher-order coefficients. The leading coefficient is

$$\begin{aligned} p_{\text {TH},3} = -8\kappa _1 \kappa _2 (\kappa _1 + \kappa _2), \end{aligned}$$
(A.12)

which is negative. The next leading coefficient can be written as

$$\begin{aligned} p_{\text {TH},2}&= 4\left[ \kappa _2^3 - (g_{1,1}+g_{2,2})\kappa _2 (2\kappa _1 + \kappa _2) \right. \nonumber \\&\quad + \left. \alpha ( 2\kappa _1^2 + 4\kappa _1\kappa _2 + \kappa _2^2) + 2 \mu _2 \kappa _1 (1 + \kappa _2)\right] , \end{aligned}$$
(A.13)

which is positive. Introducing variables

$$\begin{aligned} \varphi _1 = - g_{1,1} + \mu _2, \quad \varphi _2 = g_{1,1}g_{2,2} - g_{1,2} g_{2,1} \end{aligned}$$

which are all positive, the first-order coefficient takes the form of

$$\begin{aligned} - \frac{p_{\text {TH},1}}{2}&= 4\alpha ^2(2\kappa _1 + \kappa _2) + 2\kappa _2^2 \mu _2 + \alpha [ 2\kappa _2^2 + 6 \kappa _1 ( \mu _2 + \varphi _1) + \kappa _2 ( 3 \mu _2 + 5 \varphi _1)] \nonumber \\&\quad + 2 \kappa _1 (\mu _2^2 + \mu _2 \varphi _1 + \varphi _2 ) + \kappa _2 ( \mu _2^2 + \mu _2 \varphi _1 + \varphi _1^2 + \varphi _2), \end{aligned}$$
(A.14)

which right-hand side becomes positive. Thus, we have \(p_{\text {TH},1}<0\). From the above results, we conclude that \(p_\text {TH}(q) >0\) for \(q \in [-2,0]\).

1.3 Components of Correlation Matrices in the Mesoscopic Model

The nonzero components of \({\mathbf {B}}_{1,n}({\mathbf {u}})\) are

$$\begin{aligned}{}[{\mathbf {B}}_{1,n}]_{1,1}&= \beta _1 + \mu _1 + \rho _1 \frac{u_{1,n}^2}{u_{2,n}+u_{3,n}}, \nonumber \\ [{\mathbf {B}}_{1,n}]_{2,2}&= \alpha (u_{2,n} + u_{3,n}) + \beta _2 + \mu _2 u_{2,n} + \rho _2 u_{1,n}^2, \nonumber \\ [{\mathbf {B}}_{1,n}]_{2,3}&= B_{32}^{1,n} = - \alpha (u_{2,n} + u_{3,n}), \nonumber \\ [{\mathbf {B}}_{1,n}]_{3,3}&= \alpha (u_{2,n} + u_{3,n}) + \beta _2 + \mu _2 u_{3,n} + \rho _2 u_{1,n}^2, \nonumber \\ [{\mathbf {B}}_{1,n}]_{1,2}&= B_{21}^{1,n} = B_{13}^{1,n} = B_{31}^{1,n} =0, \end{aligned}$$
(A.15)

Similarly, the elements of the diagonal matrices \({\mathbf {B}}_{2,n}({\mathbf {u}})\) and \({\mathbf {B}}_{3,n}({\mathbf {u}})\) are

$$\begin{aligned}{}[{\mathbf {B}}_{2,n}]_{1,1}&= \kappa _1 (u_{1,n-1} + 2 u_{1,n} + u_{1,n+1}), \nonumber \\ [{\mathbf {B}}_{2,n}]_{2,2}&= \kappa _2 (u_{2,n-1} + u_{2,n}), \nonumber \\ [{\mathbf {B}}_{2,n}]_{3,3}&= \kappa _2 (u_{3,n} + u_{3,n+1}), \end{aligned}$$
(A.16)

and

$$\begin{aligned}{}[{\mathbf {B}}_{3,n}]_{11}&= -\kappa _1 (u_{1,n-1} + u_{1,n}), \nonumber \\ [{\mathbf {B}}_{3,n}]_{22}&= -\kappa _2 u_{2,n-1}, \nonumber \\ [{\mathbf {B}}_{3,n}]_{33}&= -\kappa _2 u_{3,n}.\end{aligned}$$
(A.17)

1.4 Coefficients in Stochastic Turing Pattern Condition

The first element of the power spectral density is given by Eq. (56), and the coefficients have the following explicit forms:

$$\begin{aligned} \theta _{1,1}&= 2[{\mathbf {B}}_3^*]_{1,1},\nonumber \\ \theta _{1,0}&= [{\mathbf {B}}_1^*]_{1,1} + [{\mathbf {B}}_2^*]_{1,1} + 2[{\mathbf {B}}_3^*]_{1,1}, \end{aligned}$$
(A.18)
$$\begin{aligned} \theta _{2,1}&= - 2\alpha \kappa _2 + 2 g_{2,2} \kappa _2 - 2\kappa _2^2,\nonumber \\ \theta _{2,0}&= g_{2,2}^2 - 2\alpha g_{2,2}, \end{aligned}$$
(A.19)

and

$$\begin{aligned} \theta _{3,2}&= -4\left( \alpha \kappa _1 \kappa _2 - g_{2,2} \kappa _1 \kappa _2 + \kappa _1 \kappa _2^2\right) ,\nonumber \\ \theta _{3,1}&= -2\left( \alpha g_{1,1} \kappa _2 + 2 \alpha g_{2,2} \kappa _1 - g_{1,1} g_{2,2} \kappa _2 +g_{1,1} \kappa _2^2 + g_{1,2} g_{2,1} \kappa _2 - g_{2,2}^2 \kappa _1\right) ,\nonumber \\ \theta _{3,0}&= -2 \alpha g_{1,1} g_{2,2} + 4 \alpha g_{1,2} g_{2,1} + g_{1,1} g_{2,2}^2 - 2 g_{1,2} g_{2,1} g_{2,2}. \end{aligned}$$
(A.20)

Taking the limit \(\alpha \rightarrow \infty \) in the stochastic Turing condition (57), we have a quadratic Eq. (60) and its coefficients are the following:

$$\begin{aligned} \zeta _2&= 2 g_{2,2}^2 u_1^*, \nonumber \\ \zeta _1&= \mu _1(1+ u_1^*)g_{2,2}^2 + 2 g_{1,2} g_{2,1} \kappa _2 u_1^* + g_{1,1} g_{2,2}^2 u_1^* - 2 g_{1,2}g_{2,1}g_{2,2}u_1^*, \nonumber \\ \zeta _0&= \mu _1(1+u_1^*)g_{1,2}g_{2,1} \kappa _2. \end{aligned}$$
(A.21)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H., Bressloff, P.C. Stochastic Turing Pattern Formation in a Model with Active and Passive Transport. Bull Math Biol 82, 144 (2020). https://doi.org/10.1007/s11538-020-00822-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11538-020-00822-y

Navigation