Skip to main content

Advertisement

Log in

Gamma-ray/neutron shielding capacity and elastic moduli of MnO–K2O–B2O3 glasses co-doped with Er3+ ions

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Gamma-ray/neutron shielding capacity and mechanical properties of erbium-doped potassium manganese borate glasses with the chemical form of (1 − x)MnO–29K2O–70B2O3xEr2O3: x = 0–1 mol% coded as E0E5 via bond compression model, XCOM software, and PHITS simulations have been investigated. The bulk modulus (KB.C) values increased from 90.19 for E0 glass sample with free Er2O3 to 101.24 GPa for E5 glass sample with Er2O3 = 1 mol%. The Young’s modulus (EB.C) increased from 102.68 GPa to 115.38 GPa, while the longitudinal modulus (LB.C) increased from 142.31 GPa to 159.81 GPa for E0E5 glasses. Poisson’s ratio (σB.C) decreased from 0.310261 to 0.310065 with the increase of Er3+ ions in the investigated glasses. Hardness of E0E5 glasses was increased from 4.96 GPa to 5.58 GPa. The mass attenuation coefficient (µ/ρ) values were the highest at the least energy of 0.284 MeV with values of 0.1080, 0.1096, 0.1113, 0.1129, 0.1145, and 0.1161 cm2 g−1 for E0, E1, E2, E3, E4, and E5, respectively. Moreover, radiation protection efficiency (RPE) of the E0E5 glasses was estimated using PHITS simulation code. The highest RPE was observed for E5 glass with a thickness of 5 cm. Finally, the neutron shielding capacity of E0E5 glasses was evaluated in terms of the fast neutron removal cross section (FNRCS). The values of FNRCS increased by adding Er2O3 content and a sharp increase was observed at xEr2O3: x = 0.8 mol%. Generally, one can conclude that the E5 glass sample with the highest Er2O3 (1 mol%) concentration is the best sample as radiation shield among all the studied glasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. National Research Council, Health effects of exposure to low levels of ionizing radiation: Beir V, vol. 5, (National Academies, 1990)

  2. M.I. Sayyed, Investigation of shielding parameters for smart polymers. Chin. J. Phys. 54(3), 408–415 (2016)

    Article  Google Scholar 

  3. SS. Obaid, et al., Determination of gamma ray shielding parameters of rocks and concrete. Radiat. Phys. Chem. 144, 356–360 (2018)

  4. H.O. Tekin, O. Kilicoglu, The influence of gallium (Ga) additive on nuclear radiation shielding effectivenessof Pd/Mn binary alloys. J. Alloys Compd. 81(5), 152484 (2020)

    Article  Google Scholar 

  5. F. Akman, M.R. Kaçal, M.I. Sayyed, H.A. Karataş, Study of gamma radiation attenuation properties of some selected ternary alloys. J. Alloys Compd. 782, 315–322 (2019)

    Article  Google Scholar 

  6. S.S. Obaid, et al., Photon attenuation coefficients of different rock samples using MCNPX, Geant4 simulation codes and experimental results: a comparison study. Radiat. Effic. Defect Solid 17(11–12), 900–914 (2018)

  7. S.S. Obaid et al., Attenuation coefficients and exposure buildup factor of some rocks for gamma ray shielding applications. Radiat. Phys. Chem. 148, 86–94 (2018)

    Article  ADS  Google Scholar 

  8. M.S. Al-Buriahi, F.I. El-Agawany, C. Sriwunkum, H. Akyıldırım, H. Arslan, B.T. Tonguc, R. El-Mallawany, Y.S. Rammah, Influence of Bi2O3/PbO on nuclear shielding characteristics of lead-zinc-tellurite glasses. Phys. B Condens. Matter. 581, 411946 (2020). https://doi.org/10.1016/j.physb.2019.411946

    Article  Google Scholar 

  9. M.S. Al-Buriahi, A.S. Abouhaswa, H.O. Tekin, C. Sriwunkum, F.I. El-Agawany, T. Nutaro, E. Kavaz, Y.S. Rammah, Structure, optical, gamma-ray and neutron shielding properties of NiO doped B2O3–BaCO3–Li2O3 glass systems. Ceram. Int. 46(2), 1711–1721 (2020)

    Article  Google Scholar 

  10. I.O. Olarinoye, Y.S. Rammah, S. Alraddadi, C. Sriwunkum, A.F. Abd El-Rehim, H.Y. Zahran, M.S. Al-Buriahi, The effects of La2O3 addition on mechanical and nuclear shielding properties for zinc borate glasses in Monte Carlo simulation. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.08.092

  11. D. Yılmaz, E. Kavaz, H.I. Gül, An experimental work on radiation protection features of some bioactive compounds of Mannich bases. Radiat. Phys. Chem. 176, 108986 (2020)

    Article  Google Scholar 

  12. M.S. Al-Buriahi, B. Tonguç, U. Perişanoğlu, E. Kavaz, The impact of Gd2O3 on nuclear safety proficiencies of TeO2–ZnO–Nb2O5 glasses: a GEANT4 Monte Carlo study. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.03.110

    Article  Google Scholar 

  13. M.S. Al-Buriahi, Y.S. Rammah, Electronic polarizability, dielectric, and gamma-ray shielding properties of some tellurite-based glasses. Appl. Phys. A 125(10), 678 (2019)

    Article  ADS  Google Scholar 

  14. Y.S. Rammah, M.S. Al-Buriahi, A.S. Abouhaswa, B2O3–BaCO3–Li2O3 glass system doped with Co3O4: structure, optical, and radiation shielding properties. Phys. B Condens. Matter 576, 411717 (2020). https://doi.org/10.1016/j.physb.2019.411717

    Article  Google Scholar 

  15. E. Kavaz, F.I. El_Agawany, H.O. Tekin, U. Peris¸anoglu, Y.S. Rammah, Nuclear radiation shielding using barium borosilicate glass ceramics. Journal of Physics and Chemistry of Solids 142 (2020) 109437.

  16. Y.S. Rammah, E. Kavaz, H. Akyildirim, F.I. El-Agawany, Evaluation of photon, neutron, and charged particle shielding competences of TeO2–B2O3–Bi2O3–TiO2 glasses. J. Non Cryst. Solids 535, 119960 (2020)

  17. Y.S. Rammah, A.A. Ali, R. El-Mallawany, F.I. El-Agawany, Fabrication, physical, optical characteristics and gamma-ray competence of novel bismo-borate glasses doped with Yb2O3 rare earth. Phys. B 583, 412055 (2020)

    Article  Google Scholar 

  18. Y.S. Rammah, G. Kilic, R. El-Mallawany, U.G. Issever, F.I. El-Agawany, Investigation of optical, physical, and gamma-ray shielding features of novel vanadyl boro-phosphate glasses. J. Non Cryst. Solids 533, 119905 (2020)

  19. A.S. Abouhaswa, M.S. Al-Buriahi, M. Chalermpon, Y.S. Rammah, Influence of ZrO2 on gamma shielding properties of lead borate glasses. Appl. Phys. A 126, 78 (2020)

    Article  ADS  Google Scholar 

  20. K.M. Mahmoud, Y.S. Rammah, Investigation of gamma-ray shielding capability of glasses doped with Y, Gd, Nd, Pr and Dy rare earth using MCNP-5 code. Phys. B 577, 411756 (2020)

    Article  Google Scholar 

  21. M.I. Sayyed, Y.S. Rammah, F. Laariedh, A.S. Abouhaswa, T.-B. Badeche, Lead borate glasses doped by lanthanum: Synthesis, physical, optical, and gamma photon shielding properties. J. Non Cryst. Solids 527, 119731 (2020)

  22. Y.S. Rammah, A.A. Ali, F.I. El-Agawany, γ-ray shielding features and crystallization of TiO2 borotellurite glasses. J. Non Cryst. Solids 526, 119720 (2019)

    Article  Google Scholar 

  23. V. Bhatia, D. Kumar, H. Singh, N. Kaur, S.M. Rao, A. Kumar, V. Mehta, S.P. Singh, Structural, optical and thermoluminescence properties of newly developed MnKB: Er3+ glass system. J. Non Cryst. Solids 543, 120113 (2020)

    Article  Google Scholar 

  24. A.A. El-Moneim, Quantitative analysis of elastic moduli and structure of B2O3–SiO2 and Na2O–B2O3–SiO2 glasses. Phys. B Phys. Condens. Matter 325, 319–332 (2003)

    Article  ADS  Google Scholar 

  25. N. Elkhoshkhany, E. Syala, E. Yousef, Concentration dependence of the elastic moduli, thermal properties, and non-isothermal kinetic parameters of Yb3+ doped multicomponent tellurite glass system. Results Phys. 16, 102876 (2020)

    Article  Google Scholar 

  26. L. Sihver, D. Mancusi, T. Sato, K. Niita, H. Iwase, Y. Iwamoto, N. Matsuda, H. Nakashima, Y. Sakamoto, Recent developments and benchmarking of the PHITS code. Adv. Space Res. 40, 1320–1331 (2007)

  27. M.J. Berger, J.H. Hubbell, S.M. Seltzer, J. Chang, J.S. Coursey, R. Sukumar, D.S. Zucker, K. Olsen, Xcom: photon cross sections database, NIST standard reference database 8 (xgam) (1998). https://physics.nist.gov/PhysRefData/Xcom/Text/XCOM.html

  28. E. Şakar, Ö.F. Özpolat, B. Alım, M.I. Sayyed, M. Kurudirek, Phy-X/PSD: development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiat. Phys. Chem. 166, 108496 (2020)

    Article  Google Scholar 

  29. Y. Al-Hadeethi, M.I. Sayyed, M.S. Al-Buriahi, Bioactive glasses doped with TiO2 and their potential use in radiation shielding applications. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.02.276

    Article  Google Scholar 

  30. I. Boukhris, A. Alalawi, M.S. Al-Buriahi, I. Kebaili, M.I. Sayyed, Radiation attenuation properties of bioactive glasses doped with NiO. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.05.047.

  31. M.S. Al-Buriahi, M. Rashad, Amani Alalawi, M.I. Sayyed, Effect of Bi2O3 on mechanical features and radiation shielding properties of boro-tellurite glass system. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.03.208.

  32. A. Alalawi, M.S. Al-Buriahi, M.I. Sayyed, H. Akyildirim, H. Arslan, M.H.M. Zaid, B.T. Tonguc, Influence of lead and zinc oxides on the radiation shielding properties of tellurite glass systems. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.04.017.

  33. M.S. Al-Buriahi, E.M. Bakhsh, B. Tonguc, S.B. Khan, Mechanical and radiation shielding properties of tellurite glasses doped with ZnO and NiO. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.04.240

    Article  Google Scholar 

  34. A.S. Abouhaswa, E. Kavaz, A novel B2O3–Na2O–BaO–HgO glass system: synthesis, physical, optical and nuclear shielding features. Ceram. Int. 46, 16166–16177 (2020)

    Article  Google Scholar 

  35. E. Kavaz, E.H. Ghanim, A.S. Abouhaswa, Optical, structural and nuclear radiation security properties of newly fabricated V2O5-SrO-PbO glass system. J. Non Cryst. Solids 538, 120045 (2020)

    Article  Google Scholar 

  36. A.S. Abouhaswa, U. Perişanoğlu, H.O. Tekin, E. Kavaz, A.M.A. Henaish, Nuclear shielding properties of B2O3–Pb3O4–ZnO glasses: multiple impacts of Er2O3 additive. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.07.283

    Article  Google Scholar 

  37. E. Kavaz, B. Oto, H. Durak, Z. Madak, Improving the performance of nuclear protection of Al2Si2O5(OH) 4–KAlSi3O8–SiO2 ceramics with cobalt insertion: an experimental study. J. Aust. Ceram. Soc., 1–13 (2020)

  38. https://www.us.schott.com

  39. I.I. Bashter, Calculation of radiation attenuation coefficients for shielding concretes. Ann. Nucl. Energy 24(17), 1389–1401 (1997)

    Article  Google Scholar 

  40. M.I. Sayyed, A. Hakan, M.S. Al-Buriahi, L. Eloic, A. Rachid, B. Giovanni, Oxyfluoro–tellurite–zinc glasses and the nuclear-shielding ability under the substitution of AlF 3 by ZnO. Appl. Phys. A. 126(2), 1–12 (2020)

Download references

Acknowledgements

This work was support of King Khalid University, the Ministry of Education, and Kingdom of Saudi Arabia for this research through a grant (RCAMS/KKU/005/20) under research center for advanced material science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. S. Rammah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rammah, Y.S., Mutuwong, C., Yousef, E.S. et al. Gamma-ray/neutron shielding capacity and elastic moduli of MnO–K2O–B2O3 glasses co-doped with Er3+ ions. Appl. Phys. A 126, 929 (2020). https://doi.org/10.1007/s00339-020-04097-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04097-x

Keywords

Navigation