Skip to main content
Log in

Theoretical study on critical radius of nanotube-induced self-scrolling of graphene flake

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Based on the van der Waals (vdW) interaction potential and the bending rigidity of graphene, the self-scrolling mechanical behaviors of monolayer graphene flake induced by carbon nanotube (CNT)/black phosphorus nanotube (BPNT) are studied, and the analytical expressions of critical radius of CNT/BPNT are derived when the graphene flakes spontaneously scroll round them. The factors affecting the critical radius of nanotubes are systematically analyzed, which include the axial length ratio between nanotube and graphene, wrapping angle of graphene, temperature, type and layer number of nanotube. It is found that the axial length ratio between nanotube and graphene has a significant effect on the critical radius. The critical radius of nanotubes increases with the decrease of the axial length ratio, and the critical radius of double-walled carbon nanotube (DWCNT) increases faster than that of single-walled carbon nanotube (SWCNT) and BPNT. When the SWCNT and graphene have the same axial length, the critical radius of SWCNT induced completely wrapping of monolayer graphene is about 0.4757 nm, which is in good agreement with the simulation results in the literature. The wrapping angle of graphene can also affect the critical radius of nanotubes, which increases with the increase of wrapping angle. Furthermore, the influence of environmental temperature, the type and layer number of nanotubes on the critical radius of nanotubes is discussed, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Md. Sajibul Alam Bhuyan, Md. Nizam Uddin, … Sayed Shafayat Hossain

References

  1. J.S. Bunch, A.M. van der Zande, S.S. Verbridge, I.W. Frank, D.M. Tanenbaum, J.M. Parpia, H.G. Craighead, P.L. McEuen, Science 315, 490 (2007)

    Article  ADS  Google Scholar 

  2. C. Gomez-Navarro, M. Burghard, K. Kern, Nano Lett. 8, 2045 (2008)

    Article  ADS  Google Scholar 

  3. M.A. Sillanpaa, R. Khan, T.T. Heikkila, P.J. Hakonen, Phys. Rev. B 84, 195433 (2011)

    Article  ADS  Google Scholar 

  4. P. Avouris, Nano Lett. 10, 4285 (2010)

    Article  ADS  Google Scholar 

  5. J. Zhang, J.L. Xiao, X.H. Meng, C. Monroe, Y.G. Huang, J.M. Zuo, Phys. Rev. Lett. 104, 166805 (2010)

    Article  ADS  Google Scholar 

  6. X.H. Meng, M. Li, Z. Kang, X.P. Zhang, J.L. Xiao, J. Phys. D 46, 055308 (2013)

    Article  ADS  Google Scholar 

  7. Q.F. Yin, X.H. Shi, Nanoscale. 5, 5450 (2013)

    Article  ADS  Google Scholar 

  8. Z. Zhang, T. Li, Appl. Phys. Lett. 97, 081909 (2010)

    Article  ADS  Google Scholar 

  9. N. Patra, Y.B. Song, P. Kral, ACS Nano 5, 1798 (2011)

    Article  Google Scholar 

  10. S. Fujii, T. Enoki, Acc. Chem. Res. 46, 2202 (2013)

    Article  Google Scholar 

  11. K.A. Ritter, J.W. Lyding, Nat. Mater. 8, 235 (2009)

    Article  ADS  Google Scholar 

  12. Y.F. Wang, C.G. Wang, Appl. Surf. Sci. 505, 144008 (2020)

    Article  Google Scholar 

  13. N. Patra, B.Y. Wang, P. Kral, Nano Lett. 9, 3766 (2009)

    Article  ADS  Google Scholar 

  14. X.H. Meng, M. Li, Y.L. Xing, Z.Y. Bai, Int. J. Appl. Mech. 6, 1450036 (2014)

    Article  Google Scholar 

  15. H.Y. Song, S.F. Geng, M.R. An, X.W. Zha, J. Appl. Phys. 113, 164305 (2013)

    Article  ADS  Google Scholar 

  16. D. Xia, Q.Z. Xue, J. Xie, H.J. Chen, C. Lv, F. Besenbacher, M.D. Dong, Small. 6, 2010 (2010)

    Article  Google Scholar 

  17. Y. Chen, J. Lu, Z.X. Gao, J. Phys. Chem. C 111, 1625 (2007)

    Article  Google Scholar 

  18. H. Pan, Y. Feng, J. Lin, Phys. Rev. B. 72, 033107 (2005)

    Article  Google Scholar 

  19. S.F. Braga, V.R. Coluci, S.B. Legoas, R. Giro, D.S. Galvao, R.H. Baughman, Nano Lett. 4, 881 (2004)

    Article  ADS  Google Scholar 

  20. R. Rurali, V.R. Coluci, D.S. Galvao, Phys. Rev. B 74, 085414 (2006)

    Article  ADS  Google Scholar 

  21. M. Rahmani, H.G. Fard, M.T. Ahmadi, K. Rahmani, Int. J. Environ. Anal. Chem. 97, 1024 (2017)

    Article  Google Scholar 

  22. A.V. Savin, E.A. Korznikova, S.V. Dmitriev, E.G. Soboleva, Comput. Mater. Sci. 135, 99 (2017)

    Article  Google Scholar 

  23. L.Y. Jiang, Y. Huang, H. Jiang, G. Ravichandran, H. Gao, K.C. Hwang, B. Liu, J. Mech. Phys. Solids 54, 2436 (2006)

    Article  ADS  Google Scholar 

  24. P.B. Canham, J. Theor. Biol. 26, 61 (1970)

    Article  Google Scholar 

  25. W. Helfrich, Z Naturforsch C. 28, 693 (1973)

    Article  Google Scholar 

  26. F. Ahmadpoor, P. Sharma, Extreme Mech. Lett. 14, 38 (2017)

    Article  Google Scholar 

  27. Q. Lu, M. Arroyo, R. Huang, J. Phys. D 42, 102002 (2009)

    Article  ADS  Google Scholar 

  28. W. Helfrich, Zeitschrift fur Naturforschung 30, 841 (1975)

    Article  Google Scholar 

  29. S.T. Milner, S.A. Safran, Phys. Rev. A 36, 4371 (1987)

    Article  ADS  Google Scholar 

  30. W. Helfrich, Eur. Phys. J. B 1, 481 (1998)

    Article  ADS  Google Scholar 

  31. H.A. Pinnow, W. Helfrich, Eur. Phys. J. E 3, 149 (2000)

    Article  Google Scholar 

  32. K. H., North-Holland. 114 (1986).

  33. L. Peliti, S. Leibler, Phys. Rev. Lett. 54, 1690 (1985)

    Article  ADS  Google Scholar 

  34. A.V. Savin, E.A. Korznikova, S.V. Dmitriev, Phys. Rev. B 92, 035412 (2015)

    Article  ADS  Google Scholar 

  35. K. H, North-Holland. 116 (1986).

  36. W. Helfrich, J. Phys. 46, 1263 (1985)

    Article  Google Scholar 

  37. J.H. Zhao, J.W. Jiang, Y. Jia, W.L. Guo, T. Rabczuk, Carbon 57, 108 (2013)

    Article  Google Scholar 

  38. T.C. Chang, Appl. Phys. Lett. 90, 222104 (2007)

    Article  ADS  Google Scholar 

  39. J. Shi, H.F. Cai, K. Cai, Q.H. Qin, J. Phys. D 50, 025304 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant no. 11872268), the Major Program of National Natural Science Foundation of China (Grant no. 11890682) and the Innovative Group Project of National Natural Science Foundation of China (Grant no. 12021002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Gang Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, YY., Guo, JG. Theoretical study on critical radius of nanotube-induced self-scrolling of graphene flake. Appl. Phys. A 126, 928 (2020). https://doi.org/10.1007/s00339-020-04108-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04108-x

Keywords

Navigation