Skip to main content
Log in

Regularized bridge-type estimation with multiple penalties

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

The aim of this paper is to introduce an adaptive penalized estimator for identifying the true reduced parametric model under the sparsity assumption. In particular, we deal with the framework where the unpenalized estimator of the structural parameters needs simultaneously multiple rates of convergence (i.e., the so-called mixed-rates asymptotic behavior). We introduce a bridge-type estimator by taking into account penalty functions involving \(\ell ^q\) norms (0 < q ≤ 1). We prove that the proposed regularized estimator satisfies the oracle properties. Our approach is useful for the estimation of stochastic differential equations in the parametric sparse setting. More precisely, under the high-frequency observation scheme, we apply our methodology to an ergodic diffusion and introduce a procedure for the selection of the tuning parameters. Furthermore, the paper contains a simulation study as well as a real data prediction in order to assess about the performance of the proposed bridge estimator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Antoine, B., Renault, E. (2012). Efficient minimum distance estimation with multiple rates of convergence. Journal of Econometrics, 170(2), 350–367.

    Article  MathSciNet  MATH  Google Scholar 

  • Bandi, F., Corradi, V., Moloche, G. (2009). Bandwidth selection for continuous-time Markov processes. Unpublished paper.

  • Basu, S., Michailidis, G. (2015). Regularized estimation in sparse high-dimensional time series models. The Annals of Statistics, 43(4), 1535–1567.

    Article  MathSciNet  MATH  Google Scholar 

  • Caner, M., Knight, K. (2013). An alternative to unit root tests: bridge estimators differentiate between nonstationary versus stationary models and select optimal lag. Journal of Statistical Planning and Inference, 143(4), 691–715.

    Article  MathSciNet  MATH  Google Scholar 

  • Clément, E., Gloter, A. (2019). Estimating functions for SDE driven by stable Lévy processes. Annales de l’Institut Henri Poincaré, Probabilités et Statistiques, 55(3), 1316–1348.

    Article  MathSciNet  MATH  Google Scholar 

  • De Gregorio, A., Iacus, S. M. (2012). Adaptive LASSO-type estimation for multivariate diffusion processes. Econometric Theory, 28(4), 838–860.

    Article  MathSciNet  MATH  Google Scholar 

  • De Gregorio, A., Iacus, S. M. (2018). On penalized estimation for dynamical systems with small noise. The Electronic Journal Statistics, 12(1), 1614–1630.

    Article  MathSciNet  MATH  Google Scholar 

  • Fan, J., Li, R. (2001). Variable selection via nonconcave penalized likelihood and its Oracle properties. Journal of American Statistical Association, 96, 1348–1360.

    Article  MathSciNet  MATH  Google Scholar 

  • Fan, J., Li, R. (2006). Statistical Challenges With High Dimensionality: Feature Selection in Knowledge Discovery. In Proceedings of the Madrid international congress of mathematicians, Madrid.

  • Fan, J., Peng, H. (2004). Nonconcave penalized likelihood with a diverging number of parameters. The Annals of Statistics, 32(3), 928–961.

    Article  MathSciNet  MATH  Google Scholar 

  • Frank, L. E., Friedman, J. H., Silverman, B. W. (1993). A statistical view of some chemometrics regression tools. Technometrics, 35(2), 109–135.

    Article  MATH  Google Scholar 

  • Gaïffas, S., Matulewicz, G. (2019). Sparse inference of the drift of a high-dimensional Ornstein-Uhlenbeck process. Journal of Multivariate Analysis, 169, 1–20.

    Article  MathSciNet  MATH  Google Scholar 

  • Gloter, A., Sørensen, M. (2009). Estimation for stochastic differential equations with a small diffusion coefficient. Stochastic Processes and their Applications, 119(3), 679–699.

    Article  MathSciNet  MATH  Google Scholar 

  • Hastie, T., Tibshirani, R., Friedman, J. (2009). The elements of statistical learning. Data mining, inference, and prediction 2nd ed. Springer Series in Statistics. New York: Springer.

  • Hastie, T., Tibshirani, R., Wainwright, M. (2015). Statistical learning with sparsity. The LASSO and generalizations. Monographs on Statistics and Applied Probability, 143. Boca Raton: CRC Press.

  • Iacus, S.M., Yoshida N. (2018). Simulation and inference for stochastic processes with YUIMA. A comprehensive R framework for SDEs and other stochastic processes. Use R!. Cham: Springer.

  • Kamatani, K., Uchida, M. (2015). Hybrid multi-step estimators for stochastic differential equations based on sampled data. Statistical Inference for Stochastic Processes, 18(2), 177–204.

    Article  MathSciNet  MATH  Google Scholar 

  • Kessler, M. (1997). Estimation of an ergodic diffusion from discrete observations. Scandinavian Journal of Statistics., 24(2), 211–229.

    Article  MathSciNet  MATH  Google Scholar 

  • Kinoshita Y., Yoshida N. (2019). Penalized quasi likelihood estimation for variable selection. https://arxiv.org/abs/1910.12871.

  • Knight, K., Fu, W. (2000). Asymptotics for LASSO-type estimators. The Annals of Statistics, 28(5), 1536–1378.

    MathSciNet  MATH  Google Scholar 

  • Lee, L.-F. (2004). Asymptotic distributions of quasi-maximum likelihood estimators for spatial autoregressive models. Econometrica, 72(6), 1899–1925.

    Article  MathSciNet  MATH  Google Scholar 

  • Masuda, H. (2019). Non-Gaussian quasi-likelihood estimation of SDE driven by locally stable Lévy process. Stochastic Processes and their Applications, 129(3), 1013–1059.

    Article  MathSciNet  MATH  Google Scholar 

  • Masuda, H., Shimizu, Y. (2017). Moment convergence in regularized estimation under multiple and mixed-rates asymptotics. Mathematical Methods of Statistics, 26(2), 81–110.

    Article  MathSciNet  MATH  Google Scholar 

  • McCrorie, J. R., Chambers, M. J. (2006). Granger causality and the sampling of economic processes. Journal of Econometrics, 132(2), 311–336.

    Article  MathSciNet  MATH  Google Scholar 

  • Nardi, Y., Rinaldo, A. (2011). Autoregressive process modeling via the LASSO procedure. Journal of Multivariate Analysis, 102(3), 528–549.

    Article  MathSciNet  MATH  Google Scholar 

  • Radchenko, P. (2008). Mixed-rates asymptotics. The Annals of Statistics, 36(1), 287–309.

    Article  MathSciNet  MATH  Google Scholar 

  • Shimizu, Y., Yoshida, N. (2006). Estimation of parameters for diffusion processes with jumps from discrete observations. Statistical Inference for Stochastic Processes, 9(3), 227–277.

    Article  MathSciNet  MATH  Google Scholar 

  • Sørensen, M., Uchida, M. (2003). Small-diffusion asymptotics for discretely sampled stochastic differential equations. Bernoulli, 9(6), 1051–1069.

    Article  MathSciNet  MATH  Google Scholar 

  • Suzuki, T., Yoshida, N. (2019). Penalized least squares approximation methods and their applications to stochastic processes. To appear in Japanese Journal of Statistics and Data Science, https://arxiv.org/abs/1811.09016.

  • Tibshirani, R. (1996). Regression shrinkage and selection via the LASSO. Journal of the Royal Statistical Society: Series B, 58(1), 267–288.

    MathSciNet  MATH  Google Scholar 

  • Uchida, M. (2011). Contrast-based information criterion for ergodic diffusion processes from discrete observations. Annals of the Institute of Statistical Mathematics, 62(1), 161–187.

    Article  MathSciNet  MATH  Google Scholar 

  • Uchida, M., Yoshida, N. (2012). Adaptive estimation of an ergodic diffusion process based on sampled data. Stochastic Processes and their Applications, 122(8), 2885–2924.

    Article  MathSciNet  MATH  Google Scholar 

  • Uchida, M., Yoshida, N. (2014). Adaptive Bayes type estimators of ergodic diffusion processes from discrete observations. Statistical Inference for Stochastic Processes, 17(2), 181–219.

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, H., Leng, C. (2007). Unified LASSO estimation by Least Squares Approximation. Journal of American Statistical Association, 102(479), 1039–1048.

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, H., Li, G., Tsai, C.-L. (2007). Regression coefficient and autoregressive order shrinkage and selection via the LASSO. Journal of the Royal Statistical Society Series B, 169(1), 63–78.

    MathSciNet  Google Scholar 

  • Yoshida, N. (1992). Estimation for diffusion processes from discrete observation. Journal of Multivariate Analysis, 41(2), 220–242.

    Article  MathSciNet  MATH  Google Scholar 

  • Yoshida, N. (2011). Polynomial type large deviation inequalities and quasi-likelihood analysis for stochastic differential equations. Annals of the Institute of Statistical Mathematics, 63(3), 431–479.

    Article  MathSciNet  MATH  Google Scholar 

  • Yu, J., Phillips, P. C. B. (2001). Gaussian estimation of continuous time models of the short term interest rate. The Econometrics Journal, 4(2), 210–224.

    Article  MathSciNet  MATH  Google Scholar 

  • Zou, H. (2006). The adaptive LASSO and its Oracle properties. Journal of American Statistical Association, 101(476), 1418–1429.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the Associate Editor and the Referees for their insightful remarks which led to a substantial improvement of the first version of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro De Gregorio.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Gregorio, A., Iafrate, F. Regularized bridge-type estimation with multiple penalties. Ann Inst Stat Math 73, 921–951 (2021). https://doi.org/10.1007/s10463-020-00769-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-020-00769-w

Keywords

Navigation