Skip to main content

Advertisement

Log in

Deep dive on the proteome of salivary extracellular vesicles: comparison between ultracentrifugation and polymer-based precipitation isolation

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Salivary extracellular vesicles (EVs), as novel functional carriers and potential biomarkers, are usually obtained by ultracentrifugation (UC) and polyethylene glycol (PEG)-based precipitation methods. However, salivary EVs obtained by these two methods have not been systematically compared. Here, we perform an in-depth analysis on EVs isolated by these two methods using proteomics. Both methods obtain EVs ranging from 40 to 210 nm, with the PEG method resulting in a wider size distribution. PEG-separated products were irregularly shaped and aggregated, while UC-separated ones were monodispersed and teacup-shaped. Additionally, the expression of EV-specific markers was higher in UC-separated EVs. Using tandem mass spectrometry proteomics, we identified and quantified 1217 kinds of saliva exosomal proteins and 361 kinds of differential proteins, showing that UC can isolate more EV-related proteins. These results offer some guidance for EV separating and provide potential direction for the use of EVs in non-invasive diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Inamdar S, Nitiyanandan R, Rege K. Emerging applications of exosomes in cancer therapeutics and diagnostics. Bioeng Transl Med. 2017;2(1):70–80. https://doi.org/10.1002/btm2.10059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Patel DB, Gray KM, Santharam Y, Lamichhane TN, Stroka KM, Jay SM. Impact of cell culture parameters on production and vascularization bioactivity of mesenchymal stem cell-derived extracellular vesicles. Bioeng Transl Med. 2017;2(2):170–9. https://doi.org/10.1002/btm2.10065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. El Andaloussi S, Mager I, Breakefield XO, Wood MJ. Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov. 2013;12(5):347–57. https://doi.org/10.1038/nrd3978.

    Article  CAS  Google Scholar 

  4. Skalnikova HK, Bohuslavova B, Turnovcova K, Juhasova J, Juhas S, Rodinova M, et al. Isolation and characterization of small extracellular vesicles from porcine blood plasma, cerebrospinal fluid, and seminal plasma. Proteomes. 2019;7(2). https://doi.org/10.3390/proteomes7020017.

  5. Zhang Y, Liu Y, Liu H, Tang WH. Exosomes: biogenesis, biologic function and clinical potential. Cell Biosci. 2019;9:2–18. https://doi.org/10.1186/s13578-019-0282-2.

    Article  Google Scholar 

  6. van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19(4):213–28. https://doi.org/10.1038/nrm.2017.125.

    Article  CAS  PubMed  Google Scholar 

  7. Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol. 2013;200(4):373–83. https://doi.org/10.1083/jcb.201211138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lasser C, O’Neil SE, Shelke GV, Sihlbom C, Hansson SF, Gho YS, et al. Exosomes in the nose induce immune cell trafficking and harbour an altered protein cargo in chronic airway inflammation. J Transl Med. 2016;14(1):181. https://doi.org/10.1186/s12967-016-0927-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Maas SLN, Breakefield XO, Weaver AM. Extracellular vesicles: unique intercellular delivery vehicles. Trends Cell Biol. 2017;27(3):172–88. https://doi.org/10.1016/j.tcb.2016.11.003.

    Article  CAS  PubMed  Google Scholar 

  10. Parker RB, Kohler JJ. Regulation of intracellular signaling by extracellular glycan remodeling. ACS Chem Biol. 2010;5(1):35–46. https://doi.org/10.1021/cb9002514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Simpson RJ, Lim JW, Moritz RL, Mathivanan S. Exosomes: proteomic insights and diagnostic potential. Expert Rev Proteomics. 2009;6(3):267–83. https://doi.org/10.1586/epr.09.17.

    Article  CAS  PubMed  Google Scholar 

  12. Zhao Z, Fan J, Hsu YS, Lyon CJ, Ning B, Hu TY. Extracellular vesicles as cancer liquid biopsies: from discovery, validation, to clinical application. Lab Chip. 2019;19(7):1114–40. https://doi.org/10.1039/c8lc01123k.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. van der Lubbe N, Jansen PM, Salih M, Fenton RA, van den Meiracker AH, Danser AH, et al. The phosphorylated sodium chloride cotransporter in urinary exosomes is superior to prostasin as a marker for aldosteronism. Hypertension. 2012;60(3):741–8. https://doi.org/10.1161/HYPERTENSIONAHA.112.198135.

    Article  CAS  PubMed  Google Scholar 

  14. Hogan MC, Manganelli L, Woollard JR, Masyuk AI, Masyuk TV, Tammachote R, et al. Characterization of PKD protein-positive exosome-like vesicles. J Am Soc Nephrol. 2009;20(2):278–88. https://doi.org/10.1681/ASN.2008060564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gallo A, Tandon M, Alevizos I, Illei GG. The majority of microRNAs detectable in serum and saliva is concentrated in exosomes. PLoS One. 2012;7(3):e30679. https://doi.org/10.1371/journal.pone.0030679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Han Y, Jia L, Zheng Y, Li W. Salivary exosomes: emerging roles in systemic disease. Int J Biol Sci. 2018;14(6):633–43. https://doi.org/10.7150/ijbs.25018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Huang CM. Comparative proteomic analysis of human whole saliva. Arch Oral Biol. 2004;49(12):951–62. https://doi.org/10.1016/j.archoralbio.2004.06.003.

    Article  CAS  PubMed  Google Scholar 

  18. Hu S, Loo JA, Wong DT. Human saliva proteome analysis. Ann N Y Acad Sci. 2007;1098:323–9. https://doi.org/10.1196/annals.1384.015.

    Article  CAS  PubMed  Google Scholar 

  19. Pisitkun T, Shen RF, Knepper MA. Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci U S A. 2004;101(36):13368–73. https://doi.org/10.1073/pnas.0403453101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Plubell DL, Wilmarth PA, Zhao Y, Fenton AM, Minnier J, Reddy AP, et al. Extended multiplexing of tandem mass tags (TMT) labeling reveals age and high fat diet specific proteome changes in mouse epididymal adipose tissue. Mol Cell Proteomics. 2017;16(5):873–90. https://doi.org/10.1074/mcp.M116.065524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu F, Vermesh O, Mani V, Ge TJ, Madsen SJ, Sabour A, et al. The exosome total isolation chip. ACS Nano. 2017;11(11):10712–23. https://doi.org/10.1021/acsnano.7b04878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Woo HK, Sunkara V, Park J, Kim TH, Han JR, Kim CJ, et al. Exodisc for rapid, size-selective, and efficient isolation and analysis of nanoscale extracellular vesicles from biological samples. ACS Nano. 2017;11(2):1360–70. https://doi.org/10.1021/acsnano.6b06131.

    Article  CAS  PubMed  Google Scholar 

  23. Zlotogorski-Hurvitz A, Dayan D, Chaushu G, Korvala J, Salo T, Sormunen R, et al. Human saliva-derived exosomes: comparing methods of isolation. J Histochem Cytochem. 2015;63(3):181–9. https://doi.org/10.1369/0022155414564219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang Z, Shen MM, Liu XJ, Si Y, Yu GY. Characteristics of the saliva flow rates of minor salivary glands in healthy people. Arch Oral Biol. 2015;60(3):385–92. https://doi.org/10.1016/j.archoralbio.2014.11.016.

    Article  PubMed  Google Scholar 

  25. Zhang L, Farrell JJ, Zhou H, Elashoff D, Akin D, Park NH, et al. Salivary transcriptomic biomarkers for detection of resectable pancreatic cancer. Gastroenterology. 2010;138(3):949–57 e1–7. https://doi.org/10.1053/j.gastro.2009.11.010.

    Article  CAS  PubMed  Google Scholar 

  26. Horvath J, Szabo A, Tar I, Dezso B, Kiss C, Marton I, et al. Oral health may affect the performance of mRNA-based saliva biomarkers for oral squamous cell cancer. Pathol Oncol Res. 2018;24(4):833–42. https://doi.org/10.1007/s12253-017-0296-1.

    Article  CAS  PubMed  Google Scholar 

  27. Kubala E, Strzelecka P, Grzegocka M, Lietz-Kijak D, Gronwald H, Skomro P, et al. A review of selected studies that determine the physical and chemical properties of saliva in the field of dental treatment. Biomed Res Int. 2018;2018:6572381. https://doi.org/10.1155/2018/6572381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zamanian M, Fraser LM, Agbedanu PN, Harischandra H, Moorhead AR, Day TA, et al. Release of small RNA-containing exosome-like vesicles from the human filarial parasite Brugia malayi. PLoS Negl Trop Dis. 2015;9(9):e0004069. https://doi.org/10.1371/journal.pntd.0004069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Van Deun J, Mestdagh P, Sormunen R, Cocquyt V, Vermaelen K, Vandesompele J, et al. The impact of disparate isolation methods for extracellular vesicles on downstream RNA profiling. J Extracellular Vesicles. 2014;3(1):24858. https://doi.org/10.3402/jev.v3.24858.

    Article  Google Scholar 

  30. Quackenbush JF, Cassidy PB, Pfeffer LM, Boucher KM, Hawkes JE, Pfeffer SR, et al. Isolation of circulating microRNAs from microvesicles found in human plasma. Methods Mol Biol. 2014;1102:641–53. https://doi.org/10.1007/978-1-62703-727-3_34.

    Article  CAS  PubMed  Google Scholar 

  31. Burns G, Brooks K, Wildung M, Navakanitworakul R, Christenson LK, Spencer TE. Extracellular vesicles in luminal fluid of the ovine uterus. PLoS One. 2014;9(3):e90913. https://doi.org/10.1371/journal.pone.0090913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ko J, Carpenter E, Issadore D. Detection and isolation of circulating exosomes and microvesicles for cancer monitoring and diagnostics using micro-/nano-based devices. Analyst. 2016;141(2):450–60. https://doi.org/10.1039/c5an01610j.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. van der Pol E, Hoekstra AG, Sturk A, Otto C, van Leeuwen TG, Nieuwland R. Optical and non-optical methods for detection and characterization of microparticles and exosomes. J Thromb Haemost. 2010;8(12):2596–607. https://doi.org/10.1111/j.1538-7836.2010.04074.x.

    Article  PubMed  Google Scholar 

  34. Anel A, Gallego-Lleyda A, de Miguel D, Naval J, Martínez-Lostao L. Role of Exosomes in the regulation of T-cell mediated immune responses and in autoimmune disease. Cells. 2019;8(2):154. https://doi.org/10.3390/cells8020154.

    Article  CAS  PubMed Central  Google Scholar 

Download references

Funding

The work was primarily supported by research funding provided by the National Natural Science Foundation of China (31741036, 31700702, 21904098), the National Natural Science Foundation of China (Nos. U1703251 and U1810113), the Key Research and Development Plan of Shaanxi Province (No. 2017ZDCXL-GY-10-01-02), the Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Land and Resources Open Research Topic (No. KF2016-4) and Shaanxi Provincial Innovation Capability Support Program (No. 2019TD-021), the Zhejiang Provincial and Ministry of Health Research Fund for Medical Sciences (WKJ-ZJ-1910), the Wenzhou Medical University (89218012, 89219012).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fei Liu or Yating Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 270 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Lou, D., Chen, J. et al. Deep dive on the proteome of salivary extracellular vesicles: comparison between ultracentrifugation and polymer-based precipitation isolation. Anal Bioanal Chem 413, 365–375 (2021). https://doi.org/10.1007/s00216-020-03004-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-03004-w

Keywords

Navigation