Skip to main content
Log in

Efficient multiscale analysis method for the compressive progressive damage of 3D braided composites based on FFT

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A new efficient multiscale simulation method based on fast Fourier transform (FFT) is developed to analyze the nonlinear behaviors of three-dimensional four-directional braided composites under compressive loading which is the key concern for design in the engineering application. The braid yarns within the composites are represented by the microscale unidirectional representative volume element. Both in microscale and mesoscale, FFT method combined with damage theory is used to simulate the progressive damage and failure of the composites under external loadings, in which the interface between the fiber and matrix and fiber compression instability on the microscale and the shear nonlinearity of the braid yarns under compressive loading on the mesoscale are taken into account comprehensively in the computation model. It is verified that the compressive mechanical properties of the braided composites obtained by the efficient multiscale method are in better agreement with the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also form part of an ongoing study.

References

  1. Miravete, J.M., Bielsa, A., Chiminelli, J., Cuartero, S., Serrano, N., Tolosana, R.: 3D mesomechanical analysis of three-axial braided composite materials. Compos. Sci. Technol. 66(15), 2954–2964 (2006)

    Google Scholar 

  2. Fang, G., Liang, J., Wang, B.: Progressive damage and nonlinear analysis of 3D four-directional braided composites under unidirectional tension. Compos. Struct. 89(1), 126–133 (2009)

    Google Scholar 

  3. Zhang, C., Curiel-Sosa, J.L., Bui, T.Q.: A novel interface constitutive model for prediction of stiffness and strength in 3D braided composites. Compos. Struct. 163, 32–43 (2017)

    Google Scholar 

  4. Ismar, H., Schroter, F., Streicher, F.: Influence of the fiber volume fraction and the fiber Weibull modul on the behavior of 2D woven SiC/SiC—a finite element simulation. Acta Mech. 149, 41–54 (2001)

    MATH  Google Scholar 

  5. Song, S., Waas, A.M., Shahwan, K.W.: Braided textile composites under compressive loads: modeling the response, strength and degradation. Compos. Sci. Technol. 67(15–16), 3059–3070 (2007)

    Google Scholar 

  6. Fang, G., Liang, J., Lu, Q.: Investigation on the compressive properties of the three dimensional four-directional braided composites. Compos. Struct. 93(2), 392–405 (2011)

    Google Scholar 

  7. Liu, H., Guo, L., Liu, G., Zhong, S., Zhang, L., Pan, S.: Progressive damage investigation of 2.5D woven composites under quasi-static tension. Acta Mech. 230, 1323–1336 (2019)

    Google Scholar 

  8. Feyel, F.: A multilevel finite element method (FE2) to describe the response of highly non-linear structures using generalized continua. Comput. Method. Appl. Mech. 192(28), 3233–3244 (2003)

    MATH  Google Scholar 

  9. Özdemir, I., Brekelmans, W.A.M., Geers, M.G.D.: FE2 computational homogenization for the thermo-mechanical analysis of heterogeneous solids. Comput. Method. Appl. Mech. 198(3), 602–613 (2008)

    MATH  Google Scholar 

  10. Gao, J., Liang, B., Zhang, W.: Multiscale modeling of carbon fiber reinforced polymer (CFRP) for integrated computational materials engineering process. Ford Motor Co. 5, 2007 (2017)

    Google Scholar 

  11. Yu, X.G., Cui, J.Z.: The prediction of mechanical properties of 4-step braided composites via two-scale method. Compos. Sci. Technol. 67(3–4), 471–480 (2007)

    Google Scholar 

  12. Tang, X., Whitcomb, J.D., Kelkar, A.D., Tate, J.: Progressive failure analysis of \(2\times 2\) braided composites exhibiting multiscale heterogeneity. Compos. Sci. Technol. 66(13), 2580–2590 (2006)

    Google Scholar 

  13. He, C., Ge, J., Qi, D., Gao, J., Chen, Y., Liang, J., Fang, D.: A multiscale elasto-plastic damage model for the nonlinear behavior of 3D braided composites. Compos. Sci. Technol. 171, 21–33 (2019)

    Google Scholar 

  14. Dong, J., Huo, N.: A two-scale method for predicting the mechanical properties of 3D braided composites with internal defects. Compos. Struct. 152, 1–10 (2016)

    Google Scholar 

  15. Huang, T., Gong, Y.: A multiscale analysis for predicting the elastic properties of 3D woven composites containing void defects. Compos. Struct. 185, 401–410 (2018)

    Google Scholar 

  16. Bostanabad, R., Liang, B., Gao, J.: Uncertainty quantification in multiscale simulation of woven fiber composites. Comput. Method. Appl. Mech. 338, 506–532 (2018)

    MathSciNet  MATH  Google Scholar 

  17. Balokas, G., Czichon, S., Rolfes, R.: Neural network assisted multiscale analysis for the elastic properties prediction of 3D braided composites under uncertainty. Compos. Struct. 183, 550–562 (2018)

    Google Scholar 

  18. Hong, Y., Yan, Y., Tian, Z., Guo, F., Ye, J.: Mechanical behavior analysis of 3D braided composite joint via experiment and multiscale finite element method. Compos. Struct. 208, 200–212 (2019)

    Google Scholar 

  19. Johannes, G., Matti, S., Felix, O., Andrew, H., Thomas, B.: Computational homogenization of sheet molding compound composites based on high fidelity representative volume elements. Comput. Mater. Sci. 174, 109456 (2020)

    Google Scholar 

  20. Chowdhury, N., Balasubramani, N.K., Pearce, G.M.: A multiscale modelling procedure for predicting failure in composite textiles using an enhancement approach. Eng. Fail. Anal. 102, 148–159 (2019)

    Google Scholar 

  21. Bai, X., Bessa, M.A., Melro, A.R., Camanho, P.P., Guo, L.C., Liu, K.M.: High-fidelity micro-scale modeling of the thermo-visco-plastic behavior of carbon fiber polymer matrix composites. Compos. Struct. 134, 132–141 (2015)

    Google Scholar 

  22. Wang, D., Naouar, N., Vidal-Salle, E., Boisse, P.: Longitudinal compression and Poisson ratio of fiber yarns in meso-scale finite element modeling of composite reinforcements. Compos. Part B 141, 9–19 (2018)

    Google Scholar 

  23. Sun, Q., Zhou, G., Guo, H., Meng, Z., Chen, Z., Liu, H., Kang, H., Su, X.: Failure mechanisms of cross-ply carbon fiber reinforced polymer laminates under longitudinal compression with experimental and computational analyses. Compos. Part B 167, 147–160 (2019)

    Google Scholar 

  24. Schultheisz, C.R., Waas, A.M.: Compressive failure of composites, part I: testing and micromechanical theories. Prog. Aerosp. Sci. 32(1), 1–42 (1996)

    Google Scholar 

  25. Waas, A.M., Schultheisz, C.R.: Compressive failure of composites, part II: experimental studies. Prog. Aerosp. Sci. 32(1), 43–78 (1996)

    Google Scholar 

  26. Moulinec, H., Suquet, P.: A numerical method for computing the overall response of nonlinear composites with complex microstructure. Comput. Method. Appl. Mech. 157(1–2), 69–94 (1998)

    MathSciNet  MATH  Google Scholar 

  27. Gelebart, L., Mondon-Cancel, R.: Non-linear extension of FFT-based methods accelerated by conjugate gradients to evaluate the mechanical behavior of composite materials. Comput. Mater. Sci. 77, 430–439 (2013)

    Google Scholar 

  28. De Geus, T.W.J., Vondřejc, J., Zeman, J., Peerlings, R.H.J., Geers, M.G.D.: Finite strain FFT-based non-linear solvers made simple. Comput. Method. Appl. Mech. 318, 412–430 (2017)

    MathSciNet  MATH  Google Scholar 

  29. Wang, B., Fang, G., Liu, S., Liang, J., Fu, M.: Progressive damage analysis of 3D braided composites using FFT-based method. Compos. Struct. 192, 255–263 (2018)

    Google Scholar 

  30. Wang, B., Fang, G., Liu, S., Liang, J.: Effect of heterogeneous interphase on the mechanical properties of unidirectional fiber composites studied by FFT-based method. Compos. Struct. 220, 642–651 (2019)

    Google Scholar 

  31. Chen, Y., Vasiukov, D., Gélébart, L., Park, C.H.: A FFT solver for variational phase-field modeling of brittle fracture. Comput. Method. Appl. Mech. 349, 167–190 (2019)

    MathSciNet  MATH  Google Scholar 

  32. Fang, G., Wang, B., Liang, J.: A coupled FE-FFT multiscale method for progressive damage analysis of 3D braided composites beam under bending load. Compos. Sci. Technol. 181, 107691 (2019)

    Google Scholar 

  33. Ricardo, A.L., Anthony, D.R.: Spectral methods for full-field micromechanical modeling of polycrystalline materials. Comput. Mater. Sci. 173, 109336 (2020)

    Google Scholar 

  34. Melro, A.R., Camanho, P.P., Pinho, S.T.: Influence of geometrical parameters on the elastic response of unidirectional composite materials. Compos. Struct. 94(11), 3223–3231 (2012)

    Google Scholar 

  35. Kanit, T., Forest, S., Galliet, I., Mounoury, V., Jeulin, D.: Determination of the size of the representative volume element for random composites: statistical and numerical approach. Int. J. Solids Struct. 40(13–14), 3647–3679 (2003)

    MATH  Google Scholar 

  36. Patel, D.K., Waas, A.M., Yen, C.F.: Direct numerical simulation of 3D woven textile composites subjected to tensile loading: an experimentally validated multiscale approach. Compos. Part B 152, 102–115 (2018)

    Google Scholar 

  37. Patel, D.K.: Developing a progressive damage and failure model for hybrid 3D woven textile composites using ncyl multiscale method. PhD thesis University of Michigan (2017)

  38. Fiedler, B., Hojo, M., Ochiai, S., Schulte, K., Ando, M.: Failure behavior of an epoxy matrix under different kinds of static loading. Compos. Sci. Technol. 61(11), 1615–1624 (2001)

    Google Scholar 

  39. Chen, Y., Zhao, Y., Ai, S., He, C., Tao, Y., Yang, Y., Fang, D.: A constitutive model for elastoplastical-damage coupling effect of unidirectional fiber-reinforced polymer matrix composites. Compos. Part A 130, 105736 (2020)

    Google Scholar 

  40. Maimí, P., Camanho, P.P., Mayugo, J.A., Davila, C.G.: A continuum damage model for composite laminates: part II—computational implementation and validation. Mech. Mater. 39(10), 909–919 (2007)

    Google Scholar 

  41. Zhu, Y., Zhou, B., He, G., Zhang, Z.: A statistical theory of composite materials strength. J. Compos. Mater. 23, 280–287 (1989)

    Google Scholar 

  42. Budiansky, B., Fleck, N.: Compressive failure of fiber composites. J. Mech. Phys. Solids 41, 183–211 (1993)

    Google Scholar 

  43. Wang, X., Tang, Y.: Mechanical Analysis and Designing of Composite Materials. National Defense Science and Technology University Press, Changsha (1999) (in Chinese)

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11672089, 11732002) and the Fundamental Research Funds for the Central Universities (Grant No. HIT.NSRIF.2017017).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guodong Fang or Jun Liang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Fang, G., Liang, J. et al. Efficient multiscale analysis method for the compressive progressive damage of 3D braided composites based on FFT. Acta Mech 231, 5047–5061 (2020). https://doi.org/10.1007/s00707-020-02807-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02807-3

Navigation