Skip to main content
Log in

Verification of reinforcement isotropic solid model in conjunction with maximum shear stress criterion to anticipate mixed mode I/II fracture of composite materials

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In the present research, a new criterion based on maximum shear stress (MSS) theory is developed for fracture investigation of orthotropic materials under mixed mode I/II loading. The crack is assumed to be embedded both along and across the fibers in the isotropic matrix. Self-similar crack propagation is assumed based on experimental observations and the reinforcement isotropic solid (RIS) concept is utilized for theoretical derivation of the criterion. In this model, an istropic crack tip stress field is assumed and the effects of fibers are supposed as stress reduction factors. The superiority of employing MSS theory in conjunction with RIS model is proved by derivation of a direct MSS-based mixed mode fracture criterion with respect to the orthotropic crack tip stress field. Verification of the results is performed by comparison of the fracture limit curves with available experimental mixed mode fracture data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

\(C_{ij} \) :

Components of compliance matrix

\({C}'_{ij} \) :

Components of compliance matrix in plane strain condition

\(C_{ij}^{{\text {off-axis}}} \) :

Off-axis components of compliance matrix

\(C_{ij}^{{\text {on-axis}}} \) :

On-axis components of compliance matrix

\(c_{t} ,c_{n} \) :

Extensional and sliding compliance of a damaged body

\(E_{ij} \) :

Young’s modulus

\(E_{L} ,E_{R} ,E_{T} \) :

Longitudinal, Radial and Tangential Young’s modulus for wood specimens

\(f_{ij} (\theta ),g_{ij} (\theta )\) :

Angular functions

\(G_{ij} \) :

Shear modulus of composite material

\(K_{\mathrm{I}} ,K_{{\mathrm{II}}} \) :

Mode I and mode II stress intensity factors

\(K_{{\mathrm{Ic}}} ,K_{{\mathrm{IIc}}} \) :

Mode I and mode II fracture toughness

\(K_{\mathrm{I}}^{{\mathrm{kink}}} ,K_{{\mathrm{II}}}^{{\mathrm{kink}}} \) :

Mode I and mode II stress intensity factors at the tip of the crack kink

LRT :

Longitudinal, Radial and Tangential orthotropy axes in wood specimen

\(n_{i} \) :

Reinforcement factor

r :

Distance from crack tip

\(V_{f} ,V_{m} \) :

The volume fraction of fibers and the matrix in a composite

xy :

Global coordinate system

\(\alpha _{ij} \) :

Related to crack kink angle

\(\beta _{i}\)  (i = 1...6):

Damage coefficient in the theoretical criteria

\(\theta \) :

Arbitrary angle to show stress state in crack tip

\(\lambda \) :

Dimensionless parameters

\(\nu _{{\textit{LR}}} \) :

Poisson’s ratio in RL direction

\(\nu _{{\textit{LT}}} \) :

Poisson’s ratio in TL direction

\(\nu _{{\textit{TR}}} \) :

Poisson’s ratio in RT direction

\(\xi _{i}\)  (i = 1...3):

Reinforcement factor

\(\rho _{i} \,\) :

Damage factor in fracture criteria

\(\sigma _{ij}^{{\mathrm{iso}}} \) :

Isotropic stress tensor

\(\sigma _{ij}^{{\mathrm{ortho}}} \) :

Orthotropic stress tensor

\(\tau \) :

Shear stress

\(\tau _{{\textit{cr}}} \) :

Critical Shear stress

\(\varphi \) :

Crack-Fiber angle

\(\chi \) :

Dimensionless parameters

\(\psi \) :

Airy stress function

ASER:

Augmented strain energy release rate

EMSS:

Extended maximum shear stress

FEM:

Finite element method

MPS:

Maximum principal stress

MSS:

Maximum shear stress

MTS:

Maximum tangential stress

RIS:

Reinforcement isotropic solid

RIS–MSS:

Reinforcement isotropic solid–maximum shear stress criterion

SED:

Strain energy density

SER:

Strain energy release rate

SIFs:

Stress intensity factors

References

  1. Wang, Y.Q., et al.: Fracture analysis of superconducting composites with a sandwich structure based on electromagnetic-thermal coupled model. Acta Mech. 230(12), 4435–4451 (2019)

    MathSciNet  MATH  Google Scholar 

  2. Daneshjoo, Z., Shokrieh, M.M., Fakoor, M.: A micromechanical model for prediction of mixed mode I/II delamination of laminated composites considering fiber bridging effects. Theor. Appl. Fract. Mech. 94, 46–56 (2018)

    Google Scholar 

  3. Chalivendra, Vijaya Bhaskar: Mixed-mode crack-tip stress fields for orthotropic functionally graded materials. Acta Mech. 204(1–2), 51–60 (2009)

    MATH  Google Scholar 

  4. Fakoor, Mahdi, Ghoreishi, Seyed Mohammad Navid: Verification of a micro-mechanical approach for the investigation of progressive damage in composite laminates. Acta Mech. 230(1), 225–241 (2019)

    MathSciNet  Google Scholar 

  5. De Moura, M.F.S.F., Gonçalves, J.P.M., Silva, F.G.A.: A new energy based mixed-mode cohesive zone model. Int. J. Solids Struct. 102, 112–119 (2016)

    Google Scholar 

  6. Fakoor, Mahdi, Shahsavar, Sadra: Fracture assessment of cracked composite materials: progress in models and criteria. Theor. Appl. Fract. Mech. 105, 102430 (2020)

    Google Scholar 

  7. Wu, E.M.: Application of fracture mechanics to anisotropic plates. J. Appl. Mech. 34(4), 967–974 (1967)

    MathSciNet  Google Scholar 

  8. McKinney, J.M.: Mixed-mode fracture of unidirectional graphite/epoxy composites. J. Compos. Mater. 6(1), 164–166 (1972)

    Google Scholar 

  9. Hunt, D.G., Croager, W.P.: Mode II fracture toughness of wood measured by a mixed-mode test method. J. Mater. Sci. Lett. 1(2), 77–79 (1982)

    Google Scholar 

  10. Mall, S., Murphy, Joseph F., Shottafer, James E.: Criterion for mixed mode fracture in wood. J. Eng. Mech. 109(3), 680–690 (1983)

    Google Scholar 

  11. Leicester, R.H.: Application of linear fracture mechanics to notched timber elements. Prog. Struct. Eng. Mater. 8(1), 29–37 (2006)

    Google Scholar 

  12. Theocaris, P.S.: The paraboloid failure surface for the general orthotropic material. Acta Mech. 79(1–2), 53–79 (1989)

    MATH  Google Scholar 

  13. Theocaris, P.S.: The elliptic paraboloid failure surface for 2D-transtropic plates (fiber laminates). Eng. Fract. Mech. 33(2), 185–203 (1989)

    Google Scholar 

  14. Theocaris, P.S.: The elliptic paraboloid failure criterion for cellular solids and brittle foams. Acta Mech. 89(1–4), 93–121 (1991)

    MATH  Google Scholar 

  15. Theocaris, P.S.: Failure criteria for weak-axis quasi-orthotropic woven fabric composites. Acta Mech. 95(1–4), 69–86 (1992)

    MATH  Google Scholar 

  16. Theocaris, P.S.: Failure criteria for transtropic, pressure dependent materials. Rheol. Acta 27(5), 451–465 (1988)

    MathSciNet  Google Scholar 

  17. Tupholme, G.E.: A crack within a half-space of orthotropic elastic material. Acta Mech. 79(1–2), 143–152 (1989)

    MATH  Google Scholar 

  18. Bagheri, R., Malekzadeh Fard, K., Monfared, M.M.: Dynamic fracture analysis in an orthotropic half-plane with FGM coating containing several moving cracks. Acta Mech. 226(6), 1725–1736 (2015)

    MathSciNet  MATH  Google Scholar 

  19. Matbuly, M.S., Nassar, M.: Elastostatic analysis of edge cracked orthotropic strips. Acta Mech. 165(1–2), 17–25 (2003)

    MATH  Google Scholar 

  20. Buczek, M.B., Herakovich, C.T.: A normal stress criterion for crack extension direction in orthotropic composite materials. J. Compos. Mater. 19(6), 544–553 (1985)

    Google Scholar 

  21. Jernkvist, Lars Olof: Fracture of wood under mixed mode loading: I. derivation of fracture criteria. Eng. Fract. Mech. 68(5), 549–563 (2001)

    Google Scholar 

  22. Jernkvist, Lars Olof: Fracture of wood under mixed mode loading: II. Experimental investigation of Picea abies. Eng. Fract. Mech. 68(5), 565–576 (2001)

    Google Scholar 

  23. Gdoutos, E.E., Zacharopoulos, D.A., Meletis, E.I.: Mixed-mode crack growth in anisotropic media. Eng. Fract. Mech. 34(2), 337–346 (1989)

    Google Scholar 

  24. Gdoutos, E.E.: Crack growth instability studied by the strain energy density theory. Arch. Appl. Mech. 82(10–11), 1361–1376 (2012)

    MATH  Google Scholar 

  25. Carloni, C., Nobile, L.: Crack initiation behaviour of orthotropic solids as predicted by the strain energy density theory. Theor. Appl. Fract. Mech. 38(2), 109–119 (2002)

    Google Scholar 

  26. Saouma, Victor E., Ayari, Mohamed L., Leavell, Daniel A.: Mixed mode crack propagation in homogeneous anisotropic solids. Eng. Fract. Mech. 27(2), 171–184 (1987)

    Google Scholar 

  27. Carloni, C., Nobile, L.: Maximum circumferential stress criterion applied to orthotropic materials. Fatigue Fract. Eng. Mater. Struct. 28(9), 825–833 (2005)

    Google Scholar 

  28. Fakoor, M., Rafiee, R.: Fracture investigation of wood under mixed mode I/II loading based on the maximum shear stress criterion. Strength Mater. 45(3), 378–385 (2013)

    Google Scholar 

  29. Romanowicz, Marek, Seweryn, Andrzej: Verification of a non-local stress criterion for mixed mode fracture in wood. Eng. Fract. Mech. 75(10), 3141–3160 (2008)

    Google Scholar 

  30. Romanowicz, Marek: A non-local stress fracture criterion accounting for the anisotropy of the fracture toughness. Eng. Fract. Mech. 214, 544–557 (2019)

    Google Scholar 

  31. Lu, Huaiyu, et al.: Progressive damage investigation of 2.5 D woven composites under quasi-static tension. Acta Mech. 230(4), 1323–1336 (2019)

    Google Scholar 

  32. Huynh, D.B.P., Belytschko, T.: The extended finite element method for fracture in composite materials. Int. J. Numer. Meth. Eng. 77(2), 214–239 (2009)

    MathSciNet  MATH  Google Scholar 

  33. Ma, Zhichao, Zhao, Hongwei, Ren, Luquan: Fracture criterion on the basis of uniformity of plastic work of polycrystalline ductile materials under various stress states. Acta Mech. 227(7), 2053–2059 (2016)

    Google Scholar 

  34. Shindo, Y., Narita, F., Sato, T.: Analysis of mode II interlaminar fracture and damage behavior in end notched flexure testing of GFRP woven laminates at cryogenic temperatures. Acta Mech. 187(1–4), 231–240 (2006)

    MATH  Google Scholar 

  35. Anaraki, A.R.Gowhari, Fakoor, M.: A new mixed-mode fracture criterion for orthotropic materials, based on strength properties. J. Strain Anal. Eng. Des. 46(1), 33–44 (2011)

    Google Scholar 

  36. Fakoor, M., Mehri Khansari, N.: Mixed mode I/II fracture criterion for orthotropic materials based on damage zone properties. Eng. Fract. Mech. 153, 407–420 (2016)

    Google Scholar 

  37. Berto, F., Lazzarin, P.: A review of the volume-based strain energy density approach applied to V-notches and welded structures. Theor. Appl. Fract. Mech. 52(3), 183–194 (2009)

    Google Scholar 

  38. Gómez, F.J., Elices, M., Berto, F., Lazzarin, P.: Local strain energy to assess the static failure of U-notches in plates under mixed mode loading. Int. J. Fract. 145(1), 29–45 (2007)

    MATH  Google Scholar 

  39. Ayatollahi, M.R., Aliha, M.R.M.: Mixed mode fracture in soda lime glass analyzed by using the generalized MTS criterion. Int. J. Solids Struct. 46(2), 311–321 (2009)

    MATH  Google Scholar 

  40. Ayatollahi, M.R., Aliha, M.R.M.: Mixed mode fracture analysis of polycrystalline graphite-a modified MTS criterion. Carbon 46(10), 1302–1308 (2008)

    Google Scholar 

  41. Berto, F., Lazzarin, P.: Recent developments in brittle and quasi-brittle failure assessment of engineering materials by means of local approaches. Mater. Sci. Eng. R Rep. 75, 1–48 (2014)

    Google Scholar 

  42. Van der Put, T.A.C.M.: A new fracture mechanics theory for orthotropic materials like wood. Eng. Fract. Mech. 74(5), 771–781 (2007)

    Google Scholar 

  43. Anaraki, A.R.Gowhari, Fakoor, M.: Mixed mode fracture criterion for wood based on a reinforcement microcrack damage model. Mater. Sci. Eng. A 527(27–28), 7184–7191 (2010)

    Google Scholar 

  44. Fakoor, M.: Augmented strain energy release rate (ASER): a novel approach for investigation of mixed-mode I/II fracture of composite materials. Eng. Fract. Mech. 179, 177–189 (2017)

    Google Scholar 

  45. Fakoor, Mahdi, Shokrollahi, Maryam S.: A new macro-mechanical approach for investigation of damage zone effects on mixed mode I/II fracture of orthotropic materials. Acta Mech. 229(8), 3537–3556 (2018)

    Google Scholar 

  46. Fakoor, Mahdi, Khansari, Nabi Mehri: General mixed mode I/II failure criterion for composite materials based on matrix fracture properties. Theor. Appl. Fract. Mech. 96, 428–442 (2018)

    Google Scholar 

  47. Fakoor, Mahdi, Rafiee, Roham, Zare, Shahab: Equivalent reinforcement isotropic model for fracture investigation of orthotropic materials. Steel Compos. Struct. 30(1), 1–12 (2019)

    Google Scholar 

  48. Farid, Hannaneh Manafi, Fakoor, Mahdi: Mixed mode I/II fracture criterion for arbitrary cracks in orthotropic materials considering T-stress effects. Theor. Appl. Fract. Mech. 99, 147–160 (2019)

    Google Scholar 

  49. Fakoor, Mahdi, Farid, Hannaneh Manafi: Mixed-mode I/II fracture criterion for crack initiation assessment of composite materials. Acta Mech. 230(1), 281–301 (2019)

    MathSciNet  Google Scholar 

  50. Khansari, Nabi Mehri, Fakoor, Mahdi, Berto, Filippo: Probabilistic micromechanical damage model for mixed mode I/II fracture investigation of composite materials. Theor. Appl. Fract. Mech. 99, 177–193 (2019)

    Google Scholar 

  51. Farid, Hannaneh Manafi, Fakoor, Mahdi: Mixed mode I/II fracture criterion to anticipate behavior of the orthotropic materials. Steel Compos. Struct. 34(5), 671 (2020)

    Google Scholar 

  52. De Moura, Marcelo F.S.F., Dourado, Nuno: Wood Fracture Characterization. CRC Press, Boca Raton (2018)

    Google Scholar 

  53. Ross, R.J.: Wood handbook: wood as an engineering material. USDA Forest Service, Forest Products Laboratory. General Technical Report FPL-GTR-190 509(5) (2010)

  54. Sih, G., Co, P., Paris, C., Irwin, G.R.: On cracks in rectilinearly anisotropic bodies. Int. J. Fract. Mech. 1(3), 189–203 (1965)

    Google Scholar 

  55. Anaraki, A.R., Fakoor, M.: General mixed mode I/II fracture criterion for wood considering T-stress effects. Mater. Des. 31(9), 4461–4469 (2010)

    Google Scholar 

  56. Yang, S., Yuan, F.-G.: Kinked crack in anisotropic bodies. Int. J. Solids Struct. 37(45), 6635–6682 (2000)

    MATH  Google Scholar 

  57. Wang, Tzu-Chiang, Shih, C.Fong, Suo, Z.H.I.G.A.N.G.: Crack extension and kinking in laminates and bicrystals. Int. J Solids Struct. 29(3), 327–344 (1992)

    MATH  Google Scholar 

  58. Suo, Z., Bao, G., Fan, B., Wang, T.C.: Orthotropy rescaling and implications for fracture in composites. Int. J. Solids Struct. 28(2), 235–248 (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Fakoor.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahsavar, S., Fakoor, M. & Berto, F. Verification of reinforcement isotropic solid model in conjunction with maximum shear stress criterion to anticipate mixed mode I/II fracture of composite materials. Acta Mech 231, 5105–5124 (2020). https://doi.org/10.1007/s00707-020-02810-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02810-8

Navigation