Skip to main content
Log in

Dynamic characteristics of multiscale longitudinal stress and particle rotation in ballast track under vertical cyclic loads

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Loads transfer in ballast track through contacts among randomly distributed ballast particles and have strong heterogeneity. Since the size ratio between ballast track and ballast particles is generally small, using averaged stress to describe the internal mechanical state in ballast track faces practical difficulties. For example, particle movements and high local concentration stress tend to be ignored. The inter-particle contact stress is crucial to evaluate the particle behaviors, such as abrasion, movements, and furtherly the performance of ballast track. However, the contact stress on ballast particles is hard to predict or measure. We conduct a full size model test to investigate the dynamic characteristics of longitudinal stress on ballast particles as well as different lateral regions under vertical cyclic loads with various loading magnitudes and frequencies. An obvious seesaw effect of longitudinal contact stress is observed: the stresses at some contact areas have the same phase with applied cyclic load while at other contact areas have an opposite phase. The seesaw effect of contact stress is then used to evaluate the rotational movements of ballast particles. The variation of contact area and stress of the ballast particles with loading magnitudes demonstrates that the rigid contact assumption is appropriate when analyzing the contact behavior of ballast particles. The cumulative probability distribution of contact stress with stress level can be described by an inversely proportional function, based on which the maximum contact stress can be estimated according to the longitudinal average stress. Besides, the lateral dispersion angle of the vertical loads in the ballast track is about 35°, which is independent of the given loading magnitudes and frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Abadi T, Pen LL, Zervos A, Powrie W (2018) Improving the performance of railway tracks through ballast interventions. Proc Inst Mech Eng Part F J Rail Rapid Transit 232:337–355. https://doi.org/10.1177/0954409716671545

    Article  Google Scholar 

  2. Abadi T, Pen LL, Zervos A, Powrie W (2019) Effect of sleeper interventions on railway track performance. J Geotech Geoenviron Eng 145:04019009. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002022

    Article  Google Scholar 

  3. Bian X, Jiang H, Cheng C, Chen Y, Chen R, Jiang J (2014) Full-scale model testing on a ballastless high-speed railway under simulated train moving loads. Soil Dyn Earthq Eng 66:368–384. https://doi.org/10.1016/j.soildyn.2014.08.003

    Article  Google Scholar 

  4. Brown SF, Kwan J, Thom NH (2007) Identifying the key parameters that influence geogrid reinforcement of railway ballast. Geotext Geomembr 25:326–335. https://doi.org/10.1016/j.geotexmem.2007.06.003

    Article  Google Scholar 

  5. Fu L, Xiao J, Zhou S, Zhang D, Wang Y, Liu W et al (2017) Roadbed improvement of an existing railway line located in cold region by reusing crushed deteriorated ballast. Bearing capacity of roads, railways and airfields, Athens, Greece. CRC Press, Boca Raton, pp 1845–1850. https://doi.org/10.1201/9781315100333-262

    Book  Google Scholar 

  6. Fu L, Tian Z, Zhou S, Zheng Y, Wang B (2020) Characterization of ballast particle’s movement associated with loading cycle, magnitude and frequency using SmartRock sensors. Granul Matter 22:63. https://doi.org/10.1007/s10035-020-01029-7

    Article  Google Scholar 

  7. Gao Y, Wang YH (2013) Calibration of tactile pressure sensors for measuring stress in soils. Geotech Test J 36:20120143. https://doi.org/10.1520/GTJ20120143

    Article  Google Scholar 

  8. Gao Y, Qian Y, Stoffels SM, Huang H, Liu S (2017) Characterization of railroad crosstie movements by numerical modeling and field investigation. Constr Build Mater 131:542–551. https://doi.org/10.1016/j.conbuildmat.2016.11.067

    Article  Google Scholar 

  9. Gillis K, Dashti S, Hashash YMA (2015) Dynamic calibration of tactile sensors for measurement of soil pressures in centrifuge. Geotech Test J 38:20140184. https://doi.org/10.1520/GTJ20140184

    Article  Google Scholar 

  10. Guo Y (2018) Ballast degradation: effect of particle size and shape using Los Angeles Abrasion test and image analysis. Constr. Build. Mater. 169:414–424

    Article  Google Scholar 

  11. Huang H, Tutumluer E (2011) Discrete element modeling for fouled railroad ballast. Constr Build Mater 25:3306–3312. https://doi.org/10.1016/j.conbuildmat.2011.03.019

    Article  Google Scholar 

  12. Huang H, Tutumluer E (2014) Image-aided element shape generation method in discrete-element modeling for railroad ballast. J Mater Civ Eng 26:527–535. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000839

    Article  Google Scholar 

  13. Indraratna B, Nimbalkar S (2013) Stress–strain degradation response of railway ballast stabilized with geosynthetics. J Geotech Geoenviron Eng 139:684–700. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000758

    Article  Google Scholar 

  14. Indraratna B, Hussaini SKK, Vinod JS (2013) The lateral displacement response of geogrid-reinforced ballast under cyclic loading. Geotext Geomembr 39:20–29. https://doi.org/10.1016/j.geotexmem.2013.07.007

    Article  Google Scholar 

  15. Indraratna B, Ngo NT, Rujikiatkamjorn C (2013) Deformation of coal fouled ballast stabilized with geogrid under cyclic load. J Geotech Geoenviron Eng 139:1275–1289. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000864

    Article  Google Scholar 

  16. Jing G, Aela P, Fu H (2019) The contribution of ballast layer components to the lateral resistance of ladder sleeper track. Constr Build Mater 202:796–805. https://doi.org/10.1016/j.conbuildmat.2019.01.017

    Article  Google Scholar 

  17. Jing G, Qie L, Markine V, Jia W (2019) Polyurethane reinforced ballasted track: review, innovation and challenge. Constr Build Mater 208:734–748. https://doi.org/10.1016/j.conbuildmat.2019.03.031

    Article  Google Scholar 

  18. Jing G, Zhang X, Jia W (2019) Lateral resistance of polyurethane-reinforced ballast with the application of new bonding schemes: laboratory tests and discrete element simulations. Constr Build Mater 221:627–636. https://doi.org/10.1016/j.conbuildmat.2019.06.114

    Article  Google Scholar 

  19. Jing G, Ding D, Liu X (2019) High-speed railway ballast flight mechanism analysis and risk management—a literature review. Constr Build Mater 223:629–642. https://doi.org/10.1016/j.conbuildmat.2019.06.194

    Article  Google Scholar 

  20. Joh S-H, Magno K, Hwang S (2018) Dynamic deflection of a railroad sleeper from the coupled measurements of acceleration and strain. Sensors 18:2182. https://doi.org/10.3390/s18072182

    Article  Google Scholar 

  21. Kahraman S, Toraman OY (2008) Predicting Los Angeles abrasion loss of rock aggregates from crushability index. Bull Mater Sci 31:173–177. https://doi.org/10.1007/s12034-008-0030-4

    Article  Google Scholar 

  22. Karaca Z, Günes Yılmaz N, Goktan RM (2012) Abrasion wear characterization of some selected stone flooring materials with respect to contact load. Constr Build Mater 36:520–526. https://doi.org/10.1016/j.conbuildmat.2012.06.004

    Article  Google Scholar 

  23. Kashani HF (2018) Fouling and water content influence on the ballast deformation properties. Constr. Build. Mater. 190:881–895

    Article  Google Scholar 

  24. Kashani HF, Hyslip JP, Ho CL (2017) Laboratory evaluation of railroad ballast behavior under heavy axle load and high traffic conditions. Transp Geotech 11:69–81. https://doi.org/10.1016/j.trgeo.2017.04.002

    Article  Google Scholar 

  25. Koike Y, Nakamura T, Hayano K, Momoya Y (2014) Numerical method for evaluating the lateral resistance of sleepers in ballasted tracks. Soils Found 54:502–514. https://doi.org/10.1016/j.sandf.2014.04.014

    Article  Google Scholar 

  26. Koohmishi M, Palassi M (2016) Evaluation of the strength of railway ballast using point load test for various size fractions and particle shapes. Rock Mech Rock Eng 49:2655–2664. https://doi.org/10.1007/s00603-016-0914-3

    Article  Google Scholar 

  27. Lackenby J, Indraratna B, McDowell G, Christie D (2007) Effect of confining pressure on ballast degradation and deformation under cyclic traxial loading.pdf. Geotechnique 57:527–536. https://doi.org/10.1680/geot.2007.57.6.527

    Article  Google Scholar 

  28. Leng W, Mei H, Nie R, Zhao C, Liu W, Su Y (2018) Full-scale model test of heavy haul railway subgrade. J Vib Shock 37:1–6. https://doi.org/10.13465/j.cnki.jvs.2018.4.001

    Article  Google Scholar 

  29. Lim WL, McDowell GR, Collop AC (2004) The application of Weibull statistics to the strength of railway ballast. Granul Matter 6(4):229–237

    Article  Google Scholar 

  30. Liu S, Huang H, Qiu T, Kwon J (2016) Effect of geogrid on railroad ballast particle movement. Transp Geotech 9:110–122. https://doi.org/10.1016/j.trgeo.2016.08.003

    Article  Google Scholar 

  31. Liu S, Huang H, Qiu T, Gao L (2017) Comparison of laboratory testing using smartrock and discrete element modeling of ballast particle movement. J Mater Civ Eng 29:D6016001. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001540

    Article  Google Scholar 

  32. Liu S, Huang H, Qiu T, Kwon J (2017) Comparative evaluation of particle movement in a ballast track structure stabilized with biaxial and multiaxial geogrids. Transp Res Rec 2607:15–23. https://doi.org/10.3141/2607-04

    Article  Google Scholar 

  33. Liu H, Xiao J, Wang P, Liu G, Gao M, Li S (2018) Experimental investigation of the characteristics of a granular ballast bed under cyclic longitudinal loading. Constr Build Mater 163:214–224. https://doi.org/10.1016/j.conbuildmat.2017.12.037

    Article  Google Scholar 

  34. Majmudar TS, Behringer RP (2005) Contact force measurements and stress-induced anisotropy in granular materials. Nature 435:1079–1082. https://doi.org/10.1038/nature03805

    Article  Google Scholar 

  35. McDowell GR, Bolton MD (1998) On the micromechanics of crushable aggregates. Géotechnique 48:667–679. https://doi.org/10.1680/geot.1998.48.5.667

    Article  Google Scholar 

  36. Nimbalkar S, Indraratna B (2016) Field assessment of ballasted railroads using geosynthetics and shock mats. Proc Eng 143:1485–1494. https://doi.org/10.1016/j.proeng.2016.06.175

    Article  Google Scholar 

  37. Palmer MC, O’Rourke TD, Olson NA, Abdoun T, Ha D, O’Rourke MJ (2009) Tactile pressure sensors for soil–structure interaction assessment. J Geotech Geoenviron Eng 135:1638–1645. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000143

    Article  Google Scholar 

  38. Petriaev A, Konon A, Solovyov V (2017) Performance of ballast layer reinforced with geosynthetics in terms of heavy axle load operation. Proc Eng 189:654–659. https://doi.org/10.1016/j.proeng.2017.05.104

    Article  Google Scholar 

  39. Priest JA, Powrie W, Yang L, Grabe PJ, Clayton CRI (2010) Measurements of transient ground movements below a ballasted railway line. Géotechnique 60:667–677. https://doi.org/10.1680/geot.7.00172

    Article  Google Scholar 

  40. Qian Y, Mishra D, Tutumluer E, Kazmee HA (2015) Characterization of geogrid reinforced ballast behavior at different levels of degradation through triaxial shear strength test and discrete element modeling. Geotext Geomembr 43:393–402. https://doi.org/10.1016/j.geotexmem.2015.04.012

    Article  Google Scholar 

  41. Selig ET (1987) Tensile zone effects on performance of layered systems. Géotechnique 37:247–254. https://doi.org/10.1680/geot.1987.37.3.247

    Article  Google Scholar 

  42. Shi W, Zhu J, Chiu C, Liu H (2010) Strength and deformation behaviour of coarse-grained soil by true triaxial tests. J Cent South Univ Technol 17:1095–1102. https://doi.org/10.1007/s11771-010-0602-5

    Article  Google Scholar 

  43. Sun QD, Indraratna B, Nimbalkar S (2014) Effect of cyclic loading frequency on the permanent deformation and degradation of railway ballast. Géotechnique 64:746–751. https://doi.org/10.1680/geot.14.T.015

    Article  Google Scholar 

  44. Xiao J, Wang Y, Zhang D, Zhang X, Guo J (2020) Testing of contact stress at ballast bed-soil subgrade interface under cyclic loading using the thin-film pressure sensor. J Test Eval. https://doi.org/10.1520/JTE20190171

    Article  Google Scholar 

  45. Xiao Y, Meng M, Daouadji A, Chen Q, Wu Z, Jiang X (2020) Effects of particle size on crushing and deformation behaviors of rockfill materials. Geosci Front 11:375–388. https://doi.org/10.1016/j.gsf.2018.10.010

    Article  Google Scholar 

  46. Yu Z, Woodward PK, Laghrouche O, Connolly DP (2019) True triaxial testing of geogrid for high speed railways. Transp Geotech 20:100247. https://doi.org/10.1016/j.trgeo.2019.100247

    Article  Google Scholar 

  47. Zeng K (2019) Identification of ballast condition using SmartRock and pattern recognition. Constr Build Mater 221:50–59

    Article  Google Scholar 

  48. Zhai WM, Wang KY, Lin JH (2004) Modelling and experiment of railway ballast vibrations. J Sound Vib 270:673–683. https://doi.org/10.1016/S0022-460X(03)00186-X

    Article  Google Scholar 

  49. Zhang X, Zhao C, Zhai W (2019) Importance of load frequency in applying cyclic loads to investigate ballast deformation under high-speed train loads. Soil Dyn Earthq Eng 120:28–38. https://doi.org/10.1016/j.soildyn.2019.01.023

    Article  Google Scholar 

Download references

Acknowledgements

The NSFC (National Natural Science Foundation of China) Program, Grant NO.51708423, is greatly appreciated for providing financial support for this research. The authors also thank Prof. Binglong Wang, Mr. Weixiong Xiao, Youwen Wang and Yizhe Xu for their assistance in conduction of the laboratory test.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Longlong Fu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, L., Zhou, S., Guo, P. et al. Dynamic characteristics of multiscale longitudinal stress and particle rotation in ballast track under vertical cyclic loads. Acta Geotech. 16, 1527–1545 (2021). https://doi.org/10.1007/s11440-020-01098-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-020-01098-1

Keywords

Navigation