• Open Access

Hadron beam evolution in microbunched electron cooling

P. Baxevanis and G. Stupakov
Phys. Rev. Accel. Beams 23, 111001 – Published 6 November 2020

Abstract

The technique of microbunched electron cooling (MBEC) is a coherent cooling scheme with possible applications in high-energy hadron and electron-ion machines. In our previous work we analyzed the cooling of the hadron energy spread and transverse emittance using a one-dimensional (1D) technique that tracked the microscopic fluctuations in the hadron and electron beams. However, in order to obtain analytical expressions for our key quantities, we limited ourselves to calculating and optimizing only the initial values of the cooling rates. In this paper, we extend our approach so that it properly addresses the issue of the long-term, dynamic evolution of the hadron beam. In order to do so, it becomes necessary to consider the synchrotron motion of the hadron beam, in conjunction with the effects of diffusion and intrabeam scattering (IBS). With these modifications, our formalism allows us to develop a simple numerical tool that can effectively model the final state of hadron beam after many passages through the MBEC cooler.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 23 June 2020
  • Accepted 19 October 2020

DOI:https://doi.org/10.1103/PhysRevAccelBeams.23.111001

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

Published by the American Physical Society

Physics Subject Headings (PhySH)

  1. Research Areas
Accelerators & Beams

Authors & Affiliations

P. Baxevanis and G. Stupakov

  • SLAC National Accelerator Laboratory Menlo Park, California 94025, USA

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 23, Iss. 11 — November 2020

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Accelerators and Beams

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×