Synlett 2021; 32(10): 962-970
DOI: 10.1055/a-1286-5934
account

Rare-Earth-Catalyzed Hydrosilylation and Dehydrogenative Coupling of Hydrosilanes

Wufeng Chen
,
Jianfeng Li
,
Chunming Cui
We are grateful to the National Natural Science Foundation of China (Grant Numbers 21890722, 22071123, 21632006) for financial support.


Abstract

Activation of Si–H bonds with rare-earth complexes could generate the highly reactive rare-earth hydrides or silyl complexes, which are key intermediates for hydrosilylation and cross-coupling reactions. This Account summarizes the recent advances in the rare-earth-catalyzed hydrosilylation of unsaturated substrates and dehydrogenative coupling of hydrosilanes with amines in our laboratory. The results demonstrated that rare-earth catalysts are unique in their reactivity and selectivity, enabling some unprecedented reactions.

1 Introduction

2 Dehydrogenative Coupling of Hydrosilanes with Amines

3 Catalytic Dehydrogenative Coupling of Hydrosilanes with Amines

4 Catalytic Hydrosilylation of Terminal Alkenes and Polymerization of Styrene

5 Catalytic Hydrosilylation of Internal Alkenes

6 Catalytic Dihydrosilylation of Internal Alkynes

7 Conclusions and Outlook



Publication History

Received: 19 September 2020

Accepted after revision: 08 October 2020

Accepted Manuscript online:
08 October 2020

Article published online:
05 November 2020

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Marciniec B. In Applied Homogeneous Catalysis with Organometallic Compounds . Cornils B, Herrmann WA. Wiley; Weinheim: 2002: 491
    • 1b Tilley TD. Comments Inorg. Chem. 1990; 10: 37
    • 1c Tilley TD. Acc. Chem. Res. 1993; 26: 22
    • 1d He JL, Harrod JF, Hynes R. Organometallics 1994; 13: 336
    • 1e Gauvin F, Harrod JF. Adv. Organomet. Chem. 1998; 42: 363
    • 1f Rendler S, Auer G, Oestreich M. Angew. Chem. Int. Ed. 2005; 44: 7620
    • 1g Nolan SP. Acc. Chem. Res. 2008; 41: 349
    • 1h Rappoport Z, Apeloig Y. In The Chemistry of Organic Silicon Compounds, Vol. 2 . Wiley; New York: 1998: 1687
    • 3a Molander GA, Romero JA. C. Chem. Rev. 2002; 102: 2161
    • 3b In Molecular Catalysis of Rare-Earth Elements, Vol. 137. Roesky PW. Springer; Berlin: 2010: 1
    • 3c Liu D, Liu B, Pan Z, Li J, Cui C. Sci. China: Chem. 2019; 62: 571
  • 4 Anwander R. In Principles in Organolanthanide Chemistry . Springer; Berlin/Heidelberg: 1999: 3
    • 5a Chalk AJ, Harrod JF. J. Am. Chem. Soc. 1965; 87: 16
    • 5b Schroeder MA, Wrighton MS. J. Organomet. Chem. 1977; 128: 345
    • 6a Eisenstein O, Jean Y. J. Am. Chem. Soc. 1985; 107: 1177
    • 6b Burger BJ, Thompson ME, Cotter WD, Bercaw JE. J. Am. Chem. Soc. 1990; 112: 1566
    • 6c McGrady GS, Scherer W. Angew. Chem. Int. Ed. 2004; 43: 1782
    • 7a Barbier-Baudry D, Dormond A. In Recent Advances in Hydride Chemistry . Peruzzini M, Poli R. Elsevier; Amsterdam: 2001: 249
    • 7b Fegler W, Venugopal A, Kramer M, Okuda J. Angew. Chem. Int. Ed. 2015; 54: 1724
    • 7c Shima T, Hou Z. In Recent Development in Clusters of Rare Earths and Actinides: Chemistry and Materials, Vol. 137. Zheng Z. Springer; New York: 2017: 315
    • 8a Fu P.-F, Brard L, Li Y, Marks TJ. J. Am. Chem. Soc. 1995; 117: 7157
    • 8b Takaki K, Kamata T, Miura Y, Shishido T, Takehira K. J. Org. Chem. 1999; 64: 3891
    • 8c Trifonov AA, Spaniol TP, Okuda J. Organometallics 2001; 20: 4869
    • 8d Takaki K, Komeyama K, Takehira K. Tetrahedron 2003; 59: 10381
    • 8e Konkol M, Kondracka M, Voth P, Spaniol TP, Okuda J. Organometallics 2008; 27: 3774
    • 8f Oyamada J, Nishiura M, Hou Z. Angew. Chem. Int. Ed. 2011; 50: 10720
    • 8g Luo Y, Teng H.-L, Xue C, Nishiura M, Hou Z. ACS Catal. 2018; 8: 8027
    • 9a Castillo I, Tilley TD. J. Am. Chem. Soc. 2001; 123: 10526
    • 9b Castillo I, Tilley TD. Organometallics 2001; 20: 5598
    • 9c Sadow AD, Tilley TD. Angew. Chem. Int. Ed. 2003; 42: 803
  • 10 Forsyth CM, Nolan SP, Marks TJ. Organometallics 1991; 10: 2543
  • 11 Corey JY, Braddock-Wilking J. Chem. Rev. 1999; 99: 175
  • 12 Chen Y, Song H, Cui C. Angew. Chem. Int. Ed. 2010; 49: 8958
  • 13 Ruspic C, Spielmann J, Harder S. Inorg. Chem. 2007; 46: 5320
    • 14a Eabom C, Hitchcock PB, Izod K, Smith JD. J. Am. Chem. Soc. 1994; 116: 12071
    • 14b Niemeyer M. Eur. J. Inorg. Chem. 2001; 1969
    • 14c Cofone A, Niemeyer M. Z. Anorg. Allg. Chem. 2006; 632: 1930
    • 15a Deacon GB, Forsyth CM. Chem. Commun. 2002; 2522
    • 15b Deacon GB, Forsyth CM, Junk PC. Eur. J. Inorg. Chem. 2005; 817
    • 15c Evans WJ, Champagne TM, Ziller JW. Organometallics 2007; 26: 1204
    • 15d Bochkarev LN, Makarov VM, Hrzhanovskaya YN, Zakharov LN, Fukin GK, Yanovsky AI, Struchkov YT. J. Organomet. Chem. 1994; 467: C3
  • 16 Perrin L, Eisenstein O, Maron L. New J. Chem. 2007; 31: 549
  • 17 Armitage DA. In The Silicon-Heteroatom Bond 1991; 365
  • 18 Xie W, Hu H, Cui C. Angew. Chem. Int. Ed. 2012; 51: 11141
  • 19 Horino Y, Livinghouse T. Organometallics 2004; 23: 12
  • 20 Li J, Zhao C, Liu J, Huang H, Wang F, Xu X, Cui C. Inorg. Chem. 2016; 55: 9105
    • 21a Duncalf DJ, Hitchcock PB, Lawless GA. Chem. Commun. 1996; 269
    • 21b Gun’ko YK, Hitchcock PB, Lappert MF. J. Organomet. Chem. 1995; 499: 213
    • 21c Cassani MC, Lappert MF, Laschi F. Chem. Commun. 1997; 1563
    • 21d Deacon GB, Junk PC, Moxey GJ. Z. Anorg. Allg. Chem. 2008; 634: 2789
    • 21e Liddle ST, Arnold PL. Dalton Trans. 2007; 3305
    • 21f Arnold PL, Liddle ST. Organometallics 2006; 25: 1485
    • 22a Kitayama K, Uozumi Y, Hayashi T. J. Chem. Soc., Chem. Commun. 1995; 1533
    • 22b Jensen JF, Svendsen BY, la Cour TV, Pedersen HL, Johannsen M. J. Am. Chem. Soc. 2002; 124: 4558
    • 22c Sunada Y, Tsutsumi H, Shigeta K, Yoshida R, Hashimoto T, Nagashima H. Dalton Trans. 2013; 42: 16687
    • 22d Bart SC, Lobkovsky E, Chirik PJ. J. Am. Chem. Soc. 2004; 126: 13794
    • 22e Buslov I, Becouse J, Mazza S, Montandon-Clerc M, Hu X.-L. Angew. Chem. Int. Ed. 2015; 54: 14523
    • 22f Noda D, Tahara A, Sunada Y, Nagashima H. J. Am. Chem. Soc. 2016; 138: 2480
    • 22g Jakobsson K, Chu T, Nikonov GI. ACS Catal. 2016; 6: 7350
    • 22h Leich V, Spaniol TP, Okuda J. Organometallics 2016; 35: 1179
    • 22i Buch F, Brettar J, Harder S. Angew. Chem. Int. Ed. 2006; 45: 2741
  • 23 Hu M.-Y, He Q, Fan S.-J, Wang Z.-C, Liu L.-Y, Mu Y.-J, Peng Q, Zhu S.-F. Nat. Commun. 2018; 9: 221
  • 24 Liu J, Chen W, Li J, Cui C. ACS Catal. 2018; 8: 2230
  • 25 Waterman R. Organometallics 2013; 32: 7249
  • 26 Gao L, Zhang Y, Song Z. Synlett 2013; 24: 139
    • 27a Corriu RJ. P, Granier M, Lanneau G. J. Organomet. Chem. 1998; 562: 79
    • 27b Liu Z, Tan H, Fu T, Xia Y, Qiu D, Zhang Y, Wang J. J. Am. Chem. Soc. 2015; 137: 12800
    • 27c Hazrati H, Oestreich M. Org. Lett. 2018; 20: 5367
    • 27d Liedtke J, Loss S, Widauer C, Grńtzmacher H. Tetrahedron 2000; 56: 143
    • 27e Fu P.-F. J. Mol. Catal. A 2006; 243: 253
    • 27f Gorczyński A, Zaranek M, Witomska S, Bocian A, Stefankiewicz AR, Kubicki M, Patroniak V, Pawluć P. Catal. Commun. 2016; 78: 71
    • 28a Hu M.-Y, Lian J, Sun W, Qiao T.-Z, Zhu S.-F. J. Am. Chem. Soc. 2019; 141: 4579
    • 28b Guo J, Wang H, Xing S, Hong X, Lu Z. Chem 2019; 5: 881
  • 29 Chen W, Song H, Li J, Cui C. Angew. Chem. Int. Ed. 2020; 59: 2365