Skip to main content
Log in

Optimization Problems with Gradient of Control's in the Coefficients of Elliptic Equations

  • nonlinear systems
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

Linear elliptic equations with the coefficients depending on the control function and its gradient are considered, and an optimal control problem for such equations is studied. The existence and uniqueness of the solution of this problem are proved. The results are applied to the optimal control of the boundary of a given domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tihonov, A.N. and V, ArseninMetody resheniya nekorrektnyh zadach, Moscow: Nauka, 1986, 3rd ed. Translated under the title Solutions of Ill-posed Problems, New York: Wiley, 1977, 1st ed.

  2. Lions, J. L. Optimal Control of Systems Governed by Partial Differential Equations. (Springer-Verlag, Berlin, 1971). Translated under the title Optimalanoe upravlenie sistemami, opisyvaemymi uravneniyami s chastnymi proizvodnymi, Moscow: Mir, 1972.

    Book  Google Scholar 

  3. Iskenderov, A. D. On Variational Statements of Multidimensional Inverse Problems of Mathematical Physics. Dokl. Akad. Nauk SSSR 274(no. 3), 531–535 (1984).

    MathSciNet  Google Scholar 

  4. Iskenderov, A. D. On Conditional Well-posedness of Problems with an Unknown Boundary of the Domain. Soviet. Math. Dokl. 42(no. 2), 588–592 (1991).

    MathSciNet  MATH  Google Scholar 

  5. Iskenderov, A. D., Yagubov, G. Ya & Musaeva, M. A. Identifikatsiya kvantovyh potentsialov (Identification of Quantum Potentials). (Chashyogly, Baku, 2012).

    Google Scholar 

  6. Iskenderov, A. D. & Yadubov, G. Ya Optimal Control of Nonlinear Quantum-Mechanical Systems. Autom. Remote Control 50(no. 12), 1631–1641 (1989).

    MathSciNet  MATH  Google Scholar 

  7. Iskenderov, A. D. & Gamidov, R. A. Optimal Identification of Coefficients of Elliptic Equation. Autom. Remote Control 72(no. 12), 2553–2563 (2011).

    Article  MathSciNet  Google Scholar 

  8. Banichuk, N. V. Optimizatsiya form uprugikh tel (Shape Optimization for Elastic Bodies). (Nauka, Moscow, 1980).

    Google Scholar 

  9. Vasil’ev, F. P. Metody optimizatsii (Optimization Methods). (Faktorial Press, Moscow, 2002).

    Google Scholar 

  10. Ladyzhenskaya, O. A. & Ural’tseva, N. N. Lineinye i kvazilineinye uravneniya ellipticheskogo tipa. (Nauka, Moscow, 1964). Translated under the title Linear and Quasilinear Elliptic Equations, Boston: Academic, 2016.

    Google Scholar 

  11. Funktsional’nyi analiz. Spravochnaya matematicheskaya literatura (Functional Analysis: Reference Book on Mathematics), Moscow: Nauka, 1972.

  12. Gaebel, M. On the Existence of Optimal Control. Math. Nachr. 93, 67–73 (1979).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendix

Appendix

Proof of Theorem 2. First of all, demonstrate that the functional J0(v) is continuous on the set V. Denote by uk(xv + Δv) and uk(xv) the solutions of problems (1), (7) and (1), (8) that correspond to the controls v + Δv ∈ V and v ∈ V, respectively. Let Δuk(x) ≡ uk(xv + Δv) − uk(xv), k = 1, 2. From the equation for uk(xv + Δv) subtract the corresponding equation for uk(xv). As a result, the function Δuk(x), k = 1, 2, will satisfy the integral identity

$$\begin{array}{ccccccc}\mathop{\int}\limits_{D}\left[\mathop{\sum }\limits_{i,j=1}^{n}{a}_{ij}(x,v+\Delta v,{v}_{x}+\Delta {v}_{x})\frac{\partial \Delta {u}_{k}}{\partial {x}_{j}}\frac{\partial {\eta }_{k}}{\partial {x}_{i}}\right.\\ \left.+\mathop{\sum }\limits_{i=1}^{n}{b}_{i}(x,v+\Delta v,{v}_{x}+\Delta {v}_{x})\frac{\partial \Delta {u}_{k}}{\partial {x}_{j}}{\eta }_{k}+c(x,v+\Delta v)\Delta {u}_{k}{\eta }_{k}\right]dx\\ =-\mathop{\int}\limits_{D}\left[\mathop{\sum }\limits_{i,j=1}^{n}({a}_{ij}(x,v+\Delta v,{v}_{x}+\Delta {v}_{x})-{a}_{ij}(x,v,{v}_{x}))\frac{\partial {u}_{k}}{\partial {x}_{j}}\frac{\partial {\eta }_{k}}{\partial {x}_{i}}\right.\\ +\left(\mathop{\sum }\limits_{i=1}^{n}({b}_{i}(x,v+\Delta v,{v}_{x}+\Delta {v}_{x})-{b}_{i}(x,v,{v}_{x}))\frac{\partial {u}_{k}}{\partial {x}_{i}}\right.\\ +(c(x,v+\Delta v,{v}_{x}+\Delta {v}_{x})-c(x,v,{v}_{x})){u}_{k}\\ \left.\left.-(f(x,v+\Delta v,{v}_{x}+\Delta {v}_{x})-f(x,v,{v}_{x}))\right){\eta }_{k}(x)\right]dx,\quad k=1,2,\\ \forall {\eta }_{1}={\eta }_{1}(x)\in \mathop {W_2^1}\limits^\circ ({D})\,{\rm{and}}\,\forall {\eta }_{2}={\eta }_{2}(x)\in {W}_{2}^{1}(D).\end{array}$$
(A.1)

In addition,

$$\Delta {u}_{k}(x)\in {W}_{2}^{1}(D),\quad k=1,2.$$

Introduce the auxiliary notations

$$\begin{array}{cccccc}{\bar{A}}_{ij}(x)={a}_{ij}(x,v+\Delta v,{v}_{x}+\Delta {v}_{x}),\quad i,j=\overline{1,n},\\ {\bar{B}}_{i}(x)={b}_{i}(x,v+\Delta v,{v}_{x}+\Delta {v}_{x}),\quad i=\overline{1,n},\\ \bar{C}(x)=c(x,v+\Delta v,{v}_{x}+\Delta {v}_{x}),\\ {F}_{jk}(x)=\mathop{\sum }\limits_{i=1}^{n}\left[{a}_{ij}(x,v+\Delta v,{v}_{x}+\Delta {v}_{x})-{a}_{ij}(x,v,{v}_{x})\right]\frac{\partial {u}_{k}}{\partial {x}_{i}},\\ {F}_{0k}(x)=(f(x,v+\Delta v,{v}_{x}+\Delta {v}_{x})-f(x,v,{v}_{x}))-(c(x,v+\Delta v,{v}_{x}+v)-c(x,v,{v}_{x})){u}_{k}\\ +\mathop{\sum }\limits_{i=1}^{n}\left[{b}_{i}(x,v+\Delta v,{v}_{x}+\Delta {v}_{x})-{b}_{i}(x,v,{v}_{x})\right]\frac{\partial {u}_{k}}{\partial {x}_{i}},\quad j=\overline{1,n},k=1,2.\end{array}$$

Due to the relation (9) (see Definition 1 of a generalized solution from the space \({W}_{2}^{1}(D)\)), the functions Δu1 and Δu2 represent the generalized solutions of the first and second boundary-value problems, respectively. Then in accordance with [10], these boundary-value problems for the functions Δu1 and Δu2 have unique solutions and also satisfy prior upper bounds like (5) and (6). The explicit form of the functions Fjk, \(j=\overline{0,n}\), enables rewriting these upper bounds as

$$\begin{array}{cccc}{\left\Vert \Delta {u}_{k}\right\Vert }_{{W}_{2}^{1}(D)}\le {C}_{3}\left\{\mathop{\sum }\limits_{j=1}^{n}\parallel \mathop{\sum }\limits_{i=1}^{n}{[{a}_{ij}(x,v+\Delta v,{v}_{x}+\Delta {v}_{x})-{a}_{ij}(x,v,{v}_{x})\frac{\partial {u}_{k}}{\partial {x}_{i}}]}^{2}{\parallel }_{{L}_{2}(D)}^{1/2}\right.\\ +\mathop{\sum }\limits_{i=1}^{n}\parallel \left({b}_{i}(x,v+\Delta v,{v}_{x}+\Delta {v}_{x})-{b}_{i}(x,v,{v}_{x})\right)\frac{\partial {u}_{k}}{\partial {x}_{i}}{\parallel }_{{L}_{2}(D)}\\ +\parallel f(x,v+\Delta v,{v}_{x}+\Delta {v}_{x})-f(x,v,{v}_{x}){\parallel }_{{L}_{2}(D)}\\ \left.+\parallel (c(x,v+\Delta v,{v}_{x}+\Delta {v}_{x})-c(x,v,{v}_{x})){u}_{k}{\parallel }_{{L}_{2}(D)}\right\},\end{array}$$
(A.2)

where C3 > 0 is some constant. By assumption 3) the operators Aij(v) ≡ aij(xvvx), \(i,j=\overline{1,n}\), Bi(v) ≡ bi(xvvx), \(i=\overline{1,n}\), C(v) ≡ c(xvvx), and F(v) ≡ f(xvvx) continuously act from the functional space \({W}_{\infty }^{1}(D)\) into the functional spaces L(D), L(D), L(D), and L2(D), respectively. Therefore, the right-hand side of inequality (A.2) can be estimated via Δv and Δvx in the norm L(D), i.e., in the norm \({\left\Vert \Delta v\right\Vert }_{{W}_{\infty }^{1}}\). This proves the convergence \({\left\Vert \Delta {u}_{k}\right\Vert }_{{W}_{2}^{1}(D)}\to 0\) as \({\left\Vert \Delta v\right\Vert }_{{W}_{\infty }^{1}(D)}\to 0\), k = 1, 2. In other words, the solutions of problems (1), (7) and (1), (8) in the space \({W}_{2}^{1}(D)\) continuously depend on Δv in the norm \({W}_{\infty }^{1}(D)\). Obviously, the increment of the functional J0(v) can be represented as

$$\begin{array}{ccc}\Delta {J}_{0}(v)={J}_{0}(v+\Delta v)-{J}_{\alpha }(v)\\ ={\left\Vert \omega (v(E)+\Delta v(x))[{u}_{1}(x)+\Delta {u}_{1}(x)-{u}_{2}(x)-\Delta {u}_{2}(x)]\right\Vert }_{{L}_{2}(D)}^{2}\\ -{\left\Vert \omega (v(E))[{u}_{1}(x)-{u}_{2}(x)]\right\Vert }_{{L}_{2}(D)}^{2}.\end{array}$$
(A.3)

Since the function ω(v) is continuously differentiable on \(\left[{v}_{1},{v}_{2}\right]\),

$$\omega (v+\Delta v)={\omega }_{v}(v)+0\left({\left\Vert \Delta v\right\Vert }_{{L}_{2}(D)}\right).$$

Then the increment formula (A.3) for the functional ΔJ0(v), in combination with the convergence \({\left\Vert \Delta {u}_{k}\right\Vert }_{{W}_{2}^{1}(D)}\to 0\), k = 1, 2, for v ∈ V and v + Δv ∈ V as \({\left\Vert \Delta v\right\Vert }_{{W}_{\infty }^{1}(D)}\to 0\), implies the convergence ΔJ0(v) → 0 as \({\left\Vert \Delta v\right\Vert }_{{W}_{\infty }^{1}(D)}\to 0\). In other words, the functional J0(v) is continuous on the set V.

Now take advantage of Theorem 1. Under the hypotheses of this theorem, as the space X, the set U, and the functional I0(v) choose the space L2(D), the set V, and the functional J0(v). In accordance with the considerations presented above, the functional J0(v) is continuous on V. The functional J0(v) is obviously bounded above. The set V is closed and bounded in L2(D). The space L2(D) is uniformly convex. Hence, by Theorem 1 there exists a dense subset K of the space L2(D) such that for any \(\bar{v}\in K\) problem (4) has a unique solution for any α > 0.

The proof of Theorem 2 is complete.

Proof of Theorem. Consider the optimal control problem for the boundary of a given domain. Perform an appropriate transformation of the coordinate system, in order to prove that this problem can be reduced to the problem with controls appearing in the coefficients of an elliptic equation, like (2). For system (13)–(16) introduce the new variables ti = xi, i = 1, …, n − 1, \({t}_{n}={x}_{n}/v(x^{\prime} )\), and \(t=(t^{\prime},{t}_{n})\). Therefore, \(x^{\prime} =t^{\prime} \) and \({x}_{n}={t}_{n}v(t^{\prime} )\). Denote by z(t) the function \(z(t^{\prime},{t}_{n})\). As is easily checked, \(z(t)=z(x^{\prime},{x}_{n})/v(x^{\prime} )=u(t^{\prime},{t}_{n}v(t^{\prime} ))=u(x^{\prime},{x}_{n})=u(x)\) and the domain D0 is transformed to the domain D1 with the boundary Γ1.

Apply the transformation of the coordinate system to establish that the solutions of the elliptic Eqs. (13) with the boundary conditions (14), which satisfy the integral identities (15), become the identities

$$\begin{array}{ccccc}\mathop{\int}\limits_{{D}_{1}}\left\{\mathop{\sum }\limits_{i,j=1}^{n-1}{a}_{ij}^{0}(t)\left(\frac{\partial {z}_{k}(t)}{\partial {t}_{j}}-\frac{{t}_{n}}{v(t^{\prime} )}\frac{\partial v(t^{\prime} )}{\partial {t}_{i}}\frac{\partial {z}_{k}(t)}{\partial {t}_{n}}\right)\left(\frac{\partial {\varphi }_{k}(t)}{\partial {t}_{i}}-\frac{{y}_{n}}{v(t^{\prime} )}\frac{\partial v(t^{\prime} )}{\partial {t}_{i}}\frac{\partial {\varphi }_{k}(t)}{\partial {t}_{n}}\right)\right.\\ +\mathop{\sum }\limits_{j=1}^{n-1}{a}_{nj}^{0}(t)\left(\frac{\partial {z}_{k}(t)}{\partial {t}_{j}}-\frac{{t}_{n}}{v(t^{\prime} )}\frac{\partial v(t^{\prime} )}{\partial {t}_{j}}\frac{\partial {z}_{k}(t)}{\partial {t}_{n}}\right)\frac{1}{v(y^{\prime} )}\frac{\partial {\varphi }_{k}(t)}{\partial {t}_{n}}\\ +\mathop{\sum }\limits_{i=1}^{n-1}{a}_{in}^{0}(t)\frac{\partial {z}_{k}(t)}{\partial {t}_{n}}\frac{1}{v(t^{\prime} )}\left(\frac{\partial {\varphi }_{k}(t)}{\partial {t}_{i}}-\frac{{t}_{n}}{v(t^{\prime} )}\frac{\partial v(t^{\prime} )}{\partial {t}_{i}}\times \frac{\partial {\varphi }_{k}(t)}{\partial {t}_{n}}\right)\\ +\left[\mathop{\sum }\limits_{i=1}^{n-1}{b}_{i}^{0}(t)\left(\frac{\partial {z}_{k}(t)}{\partial {t}_{i}}-\frac{{t}_{n}}{v(t^{\prime} )}\frac{\partial v(t^{\prime} )}{\partial {t}_{i}}\frac{\partial {z}_{k}(t)}{\partial {t}_{n}}\right)\right.\\ +\left.\left.{b}_{n}^{0}(t)\frac{1}{v(y^{\prime} )}\frac{\partial {z}_{k}(t)}{\partial {t}_{n}}+{c}^{0}(t){z}_{k}(t)-{f}^{0}(t)\right]{\varphi }_{k}(t)\right\}\sqrt{v(t)}dt=0,\quad k=1,2,\end{array}$$
(A.4)

with the additional notations

$$\begin{array}{ccc}{z}_{k}(t)={u}_{k}\left(t^{\prime},{t}_{n}v(t^{\prime} )\right),\quad {\varphi }_{k}(t)={\eta }_{k}\left(t^{\prime},{t}_{n}v(t^{\prime} )\right),\\ {a}_{ij}^{0}(t)={a}_{ij}\left(t^{\prime},{t}_{n}v(t^{\prime} )\right),\quad i,j=\overline{1,n},\quad {b}_{i}^{0}(t)={b}_{i}\left(t^{\prime},{t}_{n}v(t^{\prime} )\right),\quad i=\overline{1,n},\\ {c}^{0}(t)=c\left(t^{\prime},{t}_{n}v(t^{\prime} )\right),\quad {f}^{0}(t)=f\left(t^{\prime},{t}_{n}v(t^{\prime} )\right).\end{array}$$

The performance functional Jα(v) in the new variables takes the form

$${J}_{\alpha }(v)={\left\Vert \omega (v(t))\sqrt{v(t)}\left({z}_{1}(t)-{z}_{2}(t)\right)\right\Vert }_{{L}_{2}({D}_{1})}^{2}+\alpha {\left\Vert v(t)-\bar{v}(t)\right\Vert }_{{L}_{2}(D_0^\prime)}^{2},\quad \alpha \ge 0.$$
(A.5)

Identity (A.4) can be finally written as

$$\begin{array}{cc}\mathop{\int}\limits_{{D}_{1}}\left\{\mathop{\sum }\limits_{i,j=1}^{n}{\overline{a}}_{ij}(t,v(t^{\prime} ),{v}_{t}(t^{\prime} ))\frac{\partial {z}_{k}(t)}{\partial {t}_{j}}\frac{\partial {\varphi }_{k}(t)}{\partial {t}_{i}}+\left[\mathop{\sum }\limits_{i=1}^{n}{\overline{b}}_{i}(t,v(t^{\prime} ),{v}_{t}(t^{\prime} ))\frac{\partial {z}_{k}(t)}{\partial {t}_{i}}\right.\right.\\ \left.\left.+\overline{c}(t,v(t^{\prime} )){z}_{k}(t)-\overline{f}(t,v(t^{\prime} ))\right]{\varphi }_{k}(t)\right\}dt=0,\quad k=1,2,\end{array}$$

for any \({\varphi _1}(t) \in \mathop {W_2^1}\limits^\circ ({D_1})\) and \({\varphi }_{2}(t)\in {W}_{2}^{1}({D}_{1})\), where \({z}_{1}(t)\mathop {W_2^1}\limits^\circ({D}_{1})\), \({z}_{2}(t){W}_{2}^{1}({D}_{1})\) are the solutions of the integral identity (A.4). The other notations are as follows:

$$\begin{array}{ccccccc}{\overline{a}}_{ij}(t,v(t^{\prime} ),{v}_{t}(t^{\prime} ))={a}_{ij}(t^{\prime},{t}_{n}v(t^{\prime} )),\\ {\bar{a}}_{in}^{}(t,v(t^{\prime} ),{v}_{t}(t^{\prime} ))={a}_{in}^{0}(t)\frac{1}{v(t^{\prime} )}-\mathop{\sum }\limits_{j=1}^{n-1}{a}_{ij}^{0}(t)\frac{{t}_{n}}{v(t^{\prime} )}\frac{\partial v(t^{\prime} )}{\partial {t}_{j}},\\ {\bar{a}}_{nn}(t,v(t^{\prime} ),{v}_{t}(t^{\prime} ))=\mathop{\sum }\limits_{i,j=1}^{n-1}{a}_{ij}^{0}(t)\frac{{t}_{n}^{2}}{{v}^{2}(t^{\prime} )}\frac{\partial v(t^{\prime} )}{\partial {t}_{i}}\frac{\partial v(t^{\prime} )}{\partial {t}_{j}}-\mathop{\sum }\limits_{j=1}^{n-1}{a}_{nj}^{0}(t)\frac{{t}_{n}}{{v}^{2}(t^{\prime} )}\frac{\partial v(t^{\prime} )}{\partial {t}_{j}}-\mathop{\sum }\limits_{i=1}^{n-1}{a}_{in}^{0}(t)\frac{{t}_{n}}{{v}^{2}(t^{\prime\prime} )}\frac{\partial v(t^{\prime} )}{\partial {t}_{i}},\\ {\bar{b}}_{i}(t,v(t^{\prime} ),{v}_{t}(t^{\prime} ))={b}_{i}^{0}(t)={b}_{i}(t^{\prime},{t}_{n}v(t^{\prime} )),\\ {\bar{b}}_{n}(t,v(t^{\prime} ),{v}_{t}(t^{\prime} ))={b}_{n}^{0}(t)\frac{1}{v(t^{\prime} )}-\mathop{\sum }\limits_{i=1}^{n-1}{b}_{i}^{0}(t)\frac{{t}_{n}}{v(t^{\prime} )}\frac{\partial v(t^{\prime} )}{\partial {t}_{i}},\\ \bar{c}(t,v(t^{\prime} ),{v}_{y}(t^{\prime\prime} ))={c}^{0}(t)=c(t^{\prime},{t}_{n}v(t^{\prime} )),\\ \bar{f}(t,v(t^{\prime} ),{v}_{t}(t^{\prime} ))={f}^{0}(t)=f(t^{\prime},{t}_{n}v(y^{\prime} )),\quad i=\overline{1,n-1}.\end{array}$$

Clearly, the last expression is an integral identity for solving the boundary-value problems for an elliptic equation with controls appearing in the coefficients of the following form:

$$-\mathop{\sum }\limits_{i,j=1}^{n}\frac{\partial }{\partial {t}_{i}}\left({\overline{a}}_{ij}(t,v(t^{\prime} ),{v}_{t}(t^{\prime} ))\frac{\partial {z}_{k}(t)}{\partial {t}_{j}}\right)$$
(A.6)
$$\begin{array}{cc}+\mathop{\sum }\limits_{i=1}^{n}{\overline{b}}_{i}(t,v(t^{\prime} ),{v}_{t}(t^{\prime} ))\frac{\partial {z}_{k}(t)}{\partial {t}_{i}}+\overline{c}(t,v(t^{\prime} )){z}_{k}(t)=\overline{f}(t,v(t^{\prime} )),\\ {z}_{1}{| }_{{\Gamma }_{1}}={\left.\frac{\partial {z}_{2}}{\partial N}\right|}_{{\Gamma }_{1}}=0,\quad k=1,2.\end{array}$$
(A.7)

Therefore, the above-mentioned transformation of the coordinate system reduces the original optimal control problem for the boundary of a given domain to the optimal control problem with controls appearing in the coefficients of the elliptic Eq. (A.6) in the domain D1 with the boundary conditions (A.7) and the performance criterion (A.5), which is minimized on the set of admissible controls V1. This problem satisfies all hypotheses of Theorem 2, and the conclusion follows.

The proof of Theorem 3 is complete.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iskenderov, A., Gamidov, R. Optimization Problems with Gradient of Control's in the Coefficients of Elliptic Equations. Autom Remote Control 81, 1627–1636 (2020). https://doi.org/10.1134/S0005117920090039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117920090039

Keywords

Navigation