Skip to main content
Log in

Disturbance Observers: Methods and Applications. I. Methods

  • nonlinear systems
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

The survey is devoted to an exposition of the history of development and the current state of theoretical methods for constructing disturbance observers, whose appearance in control theory and practice dates back to the middle of the 1960s and is associated with the expansion of algebraic methods in controller synthesis, the emergence of computer-based synthesis procedures, the need to solve more and more complex problems, and the desire to optimize the control process. The survey describes observers of harmonic disturbances, outlines the internal model principle, considers observers of bounded disturbances, and describes methods for estimating disturbances using auxiliary filters in the form of transfer functions and state observers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. The case of unknown parameters of the internal model is considered within the framework of adaptive estimation theory [89, 95, 85, 88, 87, 97, 58, 56, 64].

  2. More precisely, the structure from [103] is identical to the structure from [108], which was chronologically earlier.

  3. We keep the notation used throughout this survey.

  4. It is not clear why in [170] the observer (5.33), (5.34) is called “adaptive”—this is an ordinary linear system with an integral of the output estimation error.

References

  1. Sariyildiz, E., Oboe, R. & Ohnishi, K. Disturbance Observer-Based Robust Control and Its Applications: 35th Anniversary Overview. IEEE Trans. Ind. Electron. 67(no. 3), 2042–2053 (2020).

    Article  Google Scholar 

  2. Athans, M. On the LQG Problem. IEEE Trans. Automat. Control 16(no. 6), 528–528 (1971).

    Article  Google Scholar 

  3. Rosenbrock, H. & McMorran, P. Good, Bad, or Optimal? IEEE Trans. Automat. Control 16(no. 6), 552–554 (1971).

    Article  Google Scholar 

  4. Doyle, J. Guaranteed Margins for LQG Regulators. IEEE Trans. Automat. Control 23(no. 4), 756–757 (1971).

    Article  Google Scholar 

  5. Pearson, J. & Staats, P. Robust Controllers for Linear Regulators. IEEE Trans. Automat. Control 19(no. 3), 231–234 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  6. Davison, E. J. & Goldenberg, A. Robust Control of a General Servomechanism Problem: The Servo Compensator. Automatica 11(no. 5), 461–471 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  7. Davison, E. The Robust Control of a Servomechanism Problem for Linear Time-Invariant Multivariable Systems. IEEE Trans. Automat. Control 21(no. 1), 25–34 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  8. Schweppe, F. Recursive State Estimation: Unknown But Bounded Errors and System Inputs. IEEE Trans. Automat. Control 13(no. 1), 22–28 (1968).

    Article  Google Scholar 

  9. Bhattacharyya, S. The Structure of Robust Observers. IEEE Trans. Automat. Control 21(no. 4), 581–588 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  10. Bhattacharyya, S. Observer Design for Linear Systems with Unknown Inputs. IEEE Trans. Automat. Control 23(no. 3), 483–484 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  11. Meditch, J. & Hostetter, G. Observers for Systems with Unknown and Inaccessible Inputs. Int. J. Control 19(no. 3), 473–480 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  12. Johnson, C. D. Optimal Control of the Linear Regulator with Constant Disturbances. IEEE Trans. Automat. Control 13(no. 4), 416–421 (1968).

    Article  MathSciNet  Google Scholar 

  13. Johnson, C. D. Further Study of the Linear Regulator with Disturbances–the Case of Vector Disturbances Satisfying a Linear Differential Equation. IEEE Trans. Automat. Control AC-15(no. 2), 222–228 (1970).

    Article  MathSciNet  Google Scholar 

  14. Johnson, C. Accommodation of External Disturbances in Linear Regulator and Servomechanism Problems. IEEE Trans. Automatic Control 16(no. 6), 635–644 (1971).

    Article  Google Scholar 

  15. Johnson, C. Accommodation of Disturbances in Optimal Control Problems. Int. J. Control 15(no. 2), 209–231 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  16. Doyle, J.C.Structured Uncertainty in Control System Design, 24th IEEE Conf. on Decision and Control, 1985, pp. 260–265.

  17. Francis, B. A. & Wonham, W. M. The Internal Model Principle of Linear Control Theory. Automatica no. 12, 457–465 (1976).

    Article  MATH  Google Scholar 

  18. Han, J. & From, P. I. D. to Active Disturbance Rejection Control. IEEE Trans. Ind. Electron. 56(no. 3), 900–906 (2009).

    Article  Google Scholar 

  19. Besekerskii, V. A. & Popov, E. P. Teoriya sistem avtomaticheskogo regulirovaniya (Theory of Automatic Control Systems). 4th ed (Professiya, St. Petersburg, 2003).

    Google Scholar 

  20. Kleiman, E. G. & Mochalov, I. A. Identification of Time-Dependent Plants. Autom. Remote Control 55(no. 2), 149–163 (1994).

    MathSciNet  MATH  Google Scholar 

  21. Kleiman, E. G. Identification of Input Signals in Dynamical Systems. Autom. Remote Control 60(no. 12), 1675–1685 (1999).

    MathSciNet  MATH  Google Scholar 

  22. Sunahara, Y. Identification of Distributed-Parameter Systems, in Distributed Parameter Control Systems: Theory and Application (pp. 57–86. Pergamon, London, 1982).

    Book  MATH  Google Scholar 

  23. Ohnaka, K. & Uosaki, K. Identification of the External Input of Distributed-Parameter Systems by the Boundary-Element Approach. Int. J. Control 43(no. 4), 1125–1133 (1986).

    Article  MATH  Google Scholar 

  24. Ohnaka, K. & Uosaki, K. Simultaneous Identification of the External Input and Parameters of Diffusion Type Distributed Parameter Systems. Int. J. Control 46(no. 3), 889–895 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  25. Ohnaka, K. & Uosaki, K. Boundary Element Approach for Identification of Point Forces of Distributed Parameter Systems. Int. J. Control 49, 119–127 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  26. Kryazhimskii, A. V. & Osipov, Yu. S. On Control Modeling in a Dynamical System. Izv. Akad. Nauk SSSR, Tekh. Kibern. no. 2, 29–41 (1983).

    Google Scholar 

  27. Kim, A. V. & Korotkii, A. M. Dynamical Modeling of the Disturbance in Parabolic Systems. Izv. Akad. Nauk SSSR, Tekh. Kibern. no. 6, 78–84 (1989).

    Google Scholar 

  28. Korotkii, A. I. & Osipov, Yu. S. Dynamical Modeling of Parameters in Hyperbolic Systems. Izv. Akad. Nauk SSSR, Tekh. Kibern. no. 2, 154–164 (1991).

    Google Scholar 

  29. Boguslavskii, I. A. & Pyatenko, T. V. Identification of Disturbances in a Dynamical System. Dokl. Akad. Nauk SSSR 310(no. 3), 549–553 (1990).

    Google Scholar 

  30. Kurek, J. Observation of the State Vector of Linear Multivariable Systems with Unknown Inputs. Int. J. Control 36(no. 3), 511–515 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  31. Lyubchik, L. M. & Tolstopyatova, S. V. Optimal Estimation of Input Signals for Discrete Stochastic Systems. Vest. Kharkov. Univ. no. 252, 5–7 (1988).

    Google Scholar 

  32. Khermanis, E. Kh Reducing the Signal Restoration Problem to a System Identification Problem. Analogo-Diskret. Preobrazovanie Signalov no. 5, 103–111 (1981).

    Google Scholar 

  33. Borukhov, V. G. & Kolesnikov, P. M. Identification of Input Influences of Systems with Distributed Parameters. Izv. Akad. Nauk SSSR, Tekh. Kibern. no. 3, 168–174 (1983).

    Google Scholar 

  34. Kornoushenko, E. K. Reconstruction of Scalar Input Signals for Discrete Linear Nonstationary Systems. Autom. Remote Control 52(no. 6), 815–824 (1991).

    MathSciNet  MATH  Google Scholar 

  35. Kornoushenko, E. K. Reconstruction of Input Signals in Discrete Linear Time-Dependent Systems on the Basis of Accumulated Data. Autom. Remote Control 53(no. 12), 1852–1862 (1992).

    MathSciNet  Google Scholar 

  36. Fhirin, M. ARMAKh Lattice Algorithm for Identification and Prediction of Dynamic Systems. Int. J. Syst. Sci. 21(no. 4), 771–781 (1990).

    Article  Google Scholar 

  37. Murio, D. & Hinestroza, D. Numerical Identification of Forcing Terms by Discrete Mollification. Comput. Math. Appl. 17(no. 11), 1441–1447 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  38. Kobayashi, T. Discrete-Time Observers and Parameter Determination for Distributed Parameter Systems with Discrete-Time Input-Output Data. SIAM J. Control Optim. 21(no. 3), 331–351 (1983).

    Article  MathSciNet  Google Scholar 

  39. Ahlén, A. Identifiability of the Deconvolution Problem. Automatica 26(no. 1), 177–181 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  40. Davison, E. J. The Output Control of Linear Time-Invariant Multivariable Systems with Unmeasurable Arbitrary Disturbances. IEEE Trans. Automat. Control 17(no. 5), 621–630 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  41. Francis, B. A. & Wonham, W. M. The Internal Model Principle for Linear Multivariable Regulators. Appl. Math. Opt. 2(no. 2), 170–194 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  42. Francis, B. A. & Wonham, W. M. The Role of Transmission Zeros in Linear Multivariable Regulators. Int. J. Control 22(no. 5), 657–681 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  43. Francis, B. A. & Wonham, W. M. The Internal Model Principle of Control Theory. Automatica 12(no. 5), 457–465 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  44. Wonham, W.M.Linear Multivariable Control: A Geometric Approach, vol. 10 of Applications of Mathematics, Balakrishnan, A.V., Karatzas, I., and Yor, M., Eds., New York: Springer-Verlag, 1985, 3rd ed.

  45. Gorez, R., Galardini, D., and Zhu, K.Y.Internal Model Control and Disturbance Observers, Proc. 30th IEEE Conf. on Decision and Control, 1991, vol. 1, pp. 229–234.

  46. Tsypkin, Ya. Z. Adaptively Invariant Discrete Control System. Autom. Remote Control 52(no. 5), 673–696 (1991).

    MathSciNet  MATH  Google Scholar 

  47. Isidori, A. Nonlinear Control Systems. 3rd ed (Springer, New York, 1995).

    Book  MATH  Google Scholar 

  48. Nikiforov, V. O. Adaptive Servomechanism Controller with an Implicit Reference Model. Int. J. Control 68(no. 2), 277–286 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  49. Nikiforov, V. O. Adaptive Non-Linear Tracking with Complete Compensation of Unknown Disturbances. Eur. J. Control 4(no. 2), 132–139 (1998).

    Article  MATH  Google Scholar 

  50. Tsypkin, Ya. Z. Robustly Optimal Discrete Control Systems. Autom. Remote Control 60(no. 3), 315–324 (1991).

    MathSciNet  MATH  Google Scholar 

  51. Du, H., Fan, G., Yi, J., et al.Disturbance Compensated Adaptive Backstepping Control for an Unmanned Seaplane, Proc. 2014 IEEE Int. Conf. on Robotics and Biomimetics (ROBIO 2014), 2014, pp. 1725–1730.

  52. Sariyildiz, E. and Ohnishi, K., A Guide to Design Disturbance Observer, J. Dyn. Sys. Meas. Control, 2014, vol. 136, no. 2.

  53. Johnson, C. Adaptive Controller Design Using Disturbance-Accommodation Techniques. Int. J. Control 42(no. 1), 193–210 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  54. Wang, H. & Daley, S. Actuator Fault Diagnosis: An Adaptive Observer-Based Technique. IEEE Trans. Automat. Control 41, 1073–1078 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  55. Xia, X. Global Frequency Estimation Using Adaptive Identifiers. IEEE Trans. Automat. Control 47(no. 7), 1188–1193 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  56. Nikiforov, V. O. Observers of External Deterministic Disturbances. II. Objects with Unknown Parameters. Autom. Remote Control 65(no. 11), 1724–1732 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  57. Bobtsov, A. A. & Pyrkin, A. A. Compensating for a Harmonic Disturbance under Control Delays. Izv. Ross. Akad. Nauk, Teor. Sist. Upravlen no. 4, 19–23 (2008).

    Google Scholar 

  58. Aranovskii, S. V., Bobtsov, A. A. & Pyrkin, A. A. Adaptive Observer of an Unknown Sinusoidal Output Disturbance for Linear Plants. Autom. Remote Control 70(no. 11), 1862–1870 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  59. Pyrkin, A.A., Smyshlyaev, A., Bekiaris-Liberis, N., and Krstic, M.Rejection of Sinusoidal Disturbance of Unknown Frequency for Linear System with Input Delay, Proc. Am. Control Conf. (ACC 2010), 2010, pp. 5688–5693.

  60. Pyrkin, A.A., Bobtsov, A.A., Kapitanyuk, Y.A., et al.Adaptive Cancellation of Unknown Multiharmonic Disturbance for Nonlinear Plant with Input Delay, Proc. 19th Mediterranean Conf. on Control Automation (MED 2011), 2011, pp. 874–879.

  61. Basturk, H.I. and Krstic, M., Adaptive Backstepping Cancelation of Unmatched Unknown Sinusoidal Disturbances for Unknown LTI Systems by State Derivative Feedback, Proc. ASME 5th Annual Dynamic Systems and Control Conf. Joint with the JSME 11th Motion and Vibration Conf. (DSCC2012-MOVIC2012), 2012, pp. 6054–6059.

  62. Basturk, H. I. & Krstic, M. State Derivative Feedback for Adaptive Cancellation of Unmatched Disturbances in Unknown Strict-Feedback LTI Systems. Automatica 50, 2539–2545 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  63. Basturk, H. I. & Krstic, M. Adaptive Sinusoidal Disturbance Cancellation for Unknown LTI Systems Despite Input Delay. Automatica 58, 131–138 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  64. Andrievskii, B. R., Bobtsov, A. A. & Fradkov, A. L. Metody analiza i sinteza nelineinykh sistem upravleniya (Analysis and Synthesis Methods for Nonlinear Control Systems). (IKI, Moscow-Izhevsk, 2018).

    Google Scholar 

  65. Utkin, V., Guldner, J. & Shi, J. Sliding Mode Control in Electromechanical Systems. (Taylor & Francis, New York, 1999).

    Google Scholar 

  66. Krasnova, S.A. and Utkin, V.A.Prelimit Implementation of States and Disturbances Observer on Sliding Modes, Proc. 2015 Int. Workshop on Recent Advances in Sliding Modes, 2015, pp. 1–6.

  67. Brown, M. and Shtessel, Y.B.Disturbance Rejection Techniques for Finite Reaching Time Continuous Sliding Mode Control, Proc. Am. Control Conference (ACC 2001), Arlington, Virginia, USA, vol. 6, Piscataway, New Jersey: IEEE Publications, 2001, pp. 4998–5003.

  68. Massey, T. & Shtessel, Y. Continuous Traditional and High-Order Sliding Modes for Satellite Formation Control. J. Guid., Control Dynam. 28(no. 4), 826–831 (2005).

    Article  Google Scholar 

  69. Besnard, L., Shtessel, Y. B. & Landrum, B. Quadrotor Vehicle Control Via Sliding Mode Controller Driven by Sliding Mode Disturbance Observer. J. Franklin I. 349(no. 2), 658–684 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  70. Chen, W.-H. Nonlinear Disturbance Observer Based Control for Nonlinear Systems with Harmonic Disturbances. IFAC Proc. Volumes 34(no. 6), 329–334 (2001). (Proc. 5th IFAC Sympos. on Nonlinear Control Systems, 2001, St. Petersburg, Russia, 4-6 July 2001).

    Article  Google Scholar 

  71. Krasnova, S. A. & Kuznetsov, S. I. Uncontrollable Perturbations of Nonlinear Dynamic Systems: Estimation on Moving Modes. Autom. Remote Control 66(no. 10), 1580–1593 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  72. Tsykunov, A. M. Algorithm of Robuts Control for Linear Dynamic Objects on the Output. Mekhatronika, Avtomatiz., Upravl. no. 8, 7–12 (2008).

    Google Scholar 

  73. Krstic, M. & Smyshlyaev, A. Backstepping Boundary Control for First-Order Hyperbolic PDEs and Application to Systems with Actuator and Sensor Delays. Syst. Control Lett. 57(no. 9), 750–758 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  74. Bobtsov, A. A., Kolyubin, S. A. & Pyrkin, A. A. Compensation of Unknown Multi-Harmonic Disturbances in Nonlinear Plants with Delayed Control. Autom. Remote Control 71(no. 11), 2383–2394 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  75. Pyrkin, A., Smyshlyaev, A., Bekiaris-Liberis, N., and Krstic, M., Output Control Algorithm for Unstable Plant with Input Delay and Cancellation of Unknown Biased Harmonic Disturbance, IFAC Proc. Volumes, 2010, vol. 43, no. 2, 39-44.

  76. Zaitseva, M. V. & Parsheva, E. A. Compensating for Noise And Perturbances in Linear Object. Control, Autom. Remote Control 72(no. 10), 2031–2040 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  77. Furtat, I. B. Robust Synchronization of Dynamical Networks With Compensation of Disturbances. Autom. Remote Control 72(no. 12), 2516–2526 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  78. Furtat, I. B. Robust Control for a Certain Class of Non-Phase-Minimal Dynamical Networks. Izv. Ross. Akad. Nauk, Teor. Sist. Upravlen no. 1, 35–48 (2014).

    Google Scholar 

  79. Borisov, O.I., Gromov, V.S., Pyrkin, A.A., and Bobtsov, A.A.Stabilization of Linear Plants with Unknown Delay and Sinusoidal Disturbance Compensation, Proc. 24th Mediterranean Conf. Control and Automation, (MED 2016), 2016, pp. 426–430.

  80. Chen, W.-H., Yang, J., Guo, L. & Li, S. Disturbance-Observer-Based Control and Related Methods–an Overview. IEEE Trans. Ind. Electron. 63(no. 2), 1083–1095 (2016).

    Article  Google Scholar 

  81. Andrievskii, B.R. and Furtat, I.B.Disturbance Observers. Methods and Applications. Part 2. Applications, Autom. Remote Control, 2020, no. 10.

  82. Luenberger, D. G. Observing the State of a Linear System. IEEE Trans. Mil. Electron. 8(no. 2), 74–80 (1964).

    Article  Google Scholar 

  83. Luenberger, D. G. An Introduction To Observers. IEEE Trans. Automat. Control 16, 596–602 (1971).

    Article  Google Scholar 

  84. Andreev, Yu. N. Upravlenie konechnomernymi lineinymi ob"ektami (Control Over Finite-Dimensional Linear Objects). (Nauka, Moscow, 1976).

    MATH  Google Scholar 

  85. Andrievskii, B. R. & Fradkov, A. L. Izbrannye glavy teorii avtomaticheskogo upravleniya s primerami na yazyke MATLAB (Selected Chapters of Automatic Control Theory with MATLAB Examples). (Nauka, St. Petersburg, 1999).

    MATH  Google Scholar 

  86. Kwakernaak, H. & Sivan, R. Linear Optimal Control Systems. (Wiley, New York, 1972). Translated under the title Lineinye optimalanye sistemy upravleniya, Moscow: Mir, 1977.

    MATH  Google Scholar 

  87. Pervozvanskii, A. A. Kurs teorii avtomaticheskogo upravleniya (A Course in Automatic Control Theory). (Nauka, Moscow, 1986).

    Google Scholar 

  88. Spravochnik po teorii avtomaticheskogo upravleniya (Handbook of Automatic Control Theory), Krasovskii, A.A., Ed., Moscow: Fizmatlit, 1987.

  89. Kuzovkov, N. T. Modalanoe upravlenie i nablyudayushchie ustroistva (Modal Control and Observation Devices). (Mashinostroenie, Moscow, 1976).

    Google Scholar 

  90. A, Gelig, Kh., Leonov, G. A. & Yakubovich, V. A. Ustoichivost’ nelineinykh sistem s needinstvennym sostoyaniem ravnovesiya (Stabilisty on Nonlinear Systems with Non-Unique Equilibrium). (Nauka, Moscow, 1978).

    Google Scholar 

  91. Chen, Y. H. Adaptive Robust Observers for Non-Linear Uncertain Systems. Int. J. Syst. Sci. 21(no. 5), 803–814 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  92. Wang, Z., Huang, B. & Unbehauen, H. Robust H Observer Design of Linear Time-Delay Systems with Parametric Uncertainty. Syst. Control Lett. 42(no. 4), 303–312 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  93. Lin, H., Zhai, G. & Antsaklis, P. J. Set-Valued Observer Design for A Class of Uncertain Linear Systems with Persistent Disturbance and Measurement Noise. Int. J. Control 76(no. 16), 1644–1653 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  94. Lüders, G. & Narendra, K. an Adaptive Observer and Identifier for A Linear System. IEEE Trans. Automat. Control 18(no. 5), 496–499 (1973).

    Article  MATH  Google Scholar 

  95. Aleksandrov, A. G. Optimalanye i adaptivnye sistemy. Uchebnoe posobie (Optimal and Adaptive Systems. A Textbook). (Vysshaya Shkola, Moscow, 1989).

    Google Scholar 

  96. Nikiforov, V. O. Observers of External Deterministic Disturbances. I. Objects with Known Parameters. Autom. Remote Control 65(no. 10), 1531–1541 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  97. Fomin, V. N., Fradkov, A. L. & Yakubovich, V. A. Adaptivnoe upravlenie dinamicheskimi ob"ektami (Adaptive Control of Dynamical Objects). (Nauka, Moscow, 1981).

    MATH  Google Scholar 

  98. Pontryagin, L. S. Obyknovennye differentsial’nye uravneniya (Ordinary Differential Equations). (Nauka, Moscow, 1974).

    MATH  Google Scholar 

  99. Tikhonov, A. N., Vasil’eva, A. B. & Sveshnikov, A. G. Differentsial’nye uravneniya (Differential Equations). 2nd ed (Nauka, Moscow, 1998).

    MATH  Google Scholar 

  100. Voronov, A. A. Osnovy teorii avtomaticheskogo upravleniya. Avtomaticheskoe regulirovanie nepreryvnykh lineinykh sistem (Foundations of Automatic Control Theory. Automatic Control for Continuous Linear Systems). (Energiya, Moscow, 1980).

    Google Scholar 

  101. Krasovskii, A. A. & Pospelov, G. S. Osnovy avtomatiki i tekhnicheskoi kibernetiki (Foundations of Automatics and Technical Cybernetics). (Gosenergoizdat, Moscow, 1982).

    Google Scholar 

  102. Popov, E. P. Teoriya lineinykh sistem avtomaticheskogo regulirovaniya i upravleniya: Uchebnoe posobie dlya vtuzov (Theory of Linear Automatic Regulation and Control Systems. Textbook for Technical Universities). 2nd ed (Nauka, Moscow, 1989).

    MATH  Google Scholar 

  103. Sun, J., Wang, C. & Xin, R. Anti-Disturbance Study of Position Servo System Based on Disturbance Observer. IFAC-PapersOnLine 51(no. 4), 202–207 (2018).

    Article  Google Scholar 

  104. Davison, E. J. & Smith, H. W. Pole Assignment in Linear Time-Invariant Multivariable Systems with Constant Disturbances. Automatica 7(no. 4), 489–498 (1971).

    Article  MathSciNet  MATH  Google Scholar 

  105. Simon, J. D. & Mitter, S. K. A Theory of Modal Control, Inform. Control 13(no. 4), 316–353 (1968).

    Article  MathSciNet  MATH  Google Scholar 

  106. Galeani, S., Menini, L. & Potini, A. Robust Trajectory Tracking for A Class of Hybrid Systems: An Internal Model Principle Approach. IEEE Trans. Automat. Control 57(no. 2), 344–359 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  107. Davison, E. J. The Robust Control of a Servomechanism Problem for Linear Time-Invariant Multivariable Systems. IEEE Trans. Automat. Control 21(no. 1), 25–34 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  108. Schrijver, E. & van Dijk, J. Disturbance Observers for Rigid Mechanical Systems: Equivalence, Stability, and Design. J. Dyn. Sys. J. Dyn. Sys. 124(no. 4), 539–548 (2002).

    Google Scholar 

  109. Lee, H. S. & Tomizuka, M. Robust Motion Controller Design for High-Accuracy Positioning Systems. IEEE Trans. Ind. Electron. 43(no. 1), 48–55 (1996).

    Article  Google Scholar 

  110. Mita, T., Hirata, M., Murata, K. & Zhang, H. H-infinity Control Versus Disturbance-Observer-Based Control. IEEE Trans. Ind. Electron. 45(no. 3), 488–495 (1998).

    Article  Google Scholar 

  111. Bickel, R. & Tomizuka, M. Passivity-Based Versus Disturbance Observer Based Robot Control: Equivalence and Stability. J. Dyn. Sys. J. Dyn. Sys. 121(no. 1), 41–47 (1999).

    Google Scholar 

  112. Umeno, T., Kaneko, T. & Hori, Y. Robust Servosystem Design with Two Degrees of Freedom and Its Application to Novel Motion Control of Robot Manipulators. IEEE Trans. Ind. Electron. 40(no. 5), 473–485 (1993).

    Article  Google Scholar 

  113. Umeno, T. & Hori, Y. Robust Speed Control of DC Servomotors Using Modern Two Degrees-of-Freedom Controller Design. IEEE Trans. Ind. Electron. 38(no. 5), 363–368 (1991).

    Article  Google Scholar 

  114. Ohishi, K., Ohnishi, K., and Miyachi, K.Torque-Speed Regulation of DC Motor Based On Load Torque Estimation Method, Proc. Int. Power Electronics Conf., (IPEC–Tokyo ’83) Tokyo, Japan, Gakkai, D., Ed., Inst. Electrical Engineers of Japan, 1983, March 27–31, vol. 2, pp. 1209–1218.

  115. Ohnishi, K. New Development of Servo Technology in Mechatronics. IEEE Trans. Ind. Applicat. 107(no. 1), 83–86 (1987).

    Article  Google Scholar 

  116. Tsykunov, A. M. Robust Control Algorithms With Compensation of Bounded Perturbations. Autom. Remote Control 68(no. 7), 1213–1224 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  117. Atassi, A. N. & Khalil, H. K. A Separation Principle for The Stabilization of a Class of Nonlinear Systems. IEEE Trans. Automat. Control 44(no. 9), 1672–1687 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  118. Furtat, I. B. & Tsykunov, A. M. Robust Control of Unsteady-State Nonlinear Structurally Undefined Objects. Probl. Upravlen. no. 5, 2–7 (2008).

    Google Scholar 

  119. Furtat, I., Fridman, E. & Fradkov, A. L. Disturbance Compensation with Finite Spectrum Assignment for Plants with Input Delay. IEEE Trans. Automat. Control 63(no. 1), 298–305 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  120. Manitius, A. Z. & Olbrot, A. W. Finite Spectrum Assignment Problem for Systems with Delays. IEEE Trans. Automat. Control AC-24(no. 4), 541–553 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  121. Furtat, I. B. & Gushchin, P. A. A Control Algorithm for an Object with Delayed Input Signal Based on Subpredictors of the Controlled Variable and Disturbance. Autom. Remote Control 80(no. 2), 201–216 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  122. Furtat, I. B. Robust Control Algorithm for Linear MIMO Plants in Conditions of Saturation of the Control Signal. Mekhatronika, Avtomatiz., Upravlen. no. 9, 579–587 (2016).

    Article  Google Scholar 

  123. Bukov, V. N. Vlozhenie sistem. Analiticheskii podkhod k analizu i sintezu matrichnykh sistem (System Embedding. An Analytic Approach to the Analysis and Synthesis of Matrix Systems). (Izd. Nauch. Lit. Bochkarevoi, Kaluga, 2006).

    Google Scholar 

  124. Proskurnikov, A. V. & Yakubovich, V. A. Universal Controllers in Optimal Control Problems with a Reference Model under Unknown External Signals. Izv. Ross. Akad. Nauk, Teor. Sist. Upravlen. no. 2, 49–62 (2012).

    Google Scholar 

  125. Krasnova, S. A. & Utkin, V. A. Kaskadnyi sintez nablyudatelei sostoyaniya dinamicheskikh sistem (Cascade Synthesis of State Obsevers for Dynamical Systems). (Nauka, Moscow, 2006).

    Google Scholar 

  126. Vasilenko, G. I. Teoriya vosstanovleniya signalov (Theory of Signal Restoration). (Sovetskoe Radio, Moscow, 1979).

    Google Scholar 

  127. Blizorukova, M. S., Maksimov, V. I. & Pandolfi, L. Dynamic Input Reconstruction for a Nonlinear Time-Delay System. Autom. Remote Control 63(no. 2), 171–180 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  128. Osipov, Y. & Kryazhimskii, A. Inverse Problems for Ordinary Differential Equations: Dynamical Solutions. (Gordon and Breach, London, 1995). ISBN: 2-88124-944-2.

    MATH  Google Scholar 

  129. Maksimov, V.I.On the Reconstruction of a Control Through Results of Observations, Proc. 3rd Eur. Control Conf. (ECC’95), Rome, Italy, 1995, pp. 3766–3771.

  130. Kryazhimskii, A. V., Maksimov, V. I. & Osipov, Yu. S. On Positional Modeling in Dynamical Systems. Prikl. Mat. Mekh. 47(no. 6), 815–825 (1983).

    Google Scholar 

  131. Maksimov, V. I. On the Reconstruction of Boundary Disturbances: the Case of Neyman Boundary Conditions. Tr. Inst. Mat. Mekh. UrO Ross. Akad. Nauk 11(no. 1), 160–176 (2005).

    Google Scholar 

  132. Blizorukova, M. S. & Maksimov, V. I. On One Algorithm for Dynamical Reconstruction of Input Influences under Measurement of a Part of the Coordinates. Zh. Vychisl. Mat. Mat. Fiz. 51(no. 6), 1007–1017 (2011).

    MathSciNet  MATH  Google Scholar 

  133. Blizorukova, M. S. & Maksimov, V. I. On One Algorithm for Dynamic Reconstruction of the Input Influence. Differ. Uravn. 49(no. 1), 88–100 (2013).

    MATH  Google Scholar 

  134. Maksimov, V. I. On Applications of Finite-Dimensional Controllable Models to the Input Reconstruction Problem for a Linear System with Delay. Tr. Inst. Mat. Mekh. UrO Ross. Akad. Nauk 19(no. 1), 196–204 (2013).

    Google Scholar 

  135. Maksimov, V. I. On the Problem of Reconstructing the Input of a Nonlinear System with Constant Delay. Tr. Inst. Mat. Mekh. UrO Ross. Akad. Nauk 24(no. 1), 121–130 (2018).

    MathSciNet  Google Scholar 

  136. Maksimov, V. I. On Dynamical Reconstruction of System Disturbances by Imprecise Discrete Measurements of Phase Coordinates. Izv. Ross. Akad. Nauk, Teor. Sist. Upravlen no. 3, 15–32 (2018).

    Google Scholar 

  137. Maksimov, V. I. Reconstruction of the Input Influence of a Dynamical System under Measurement of a Part of the Phase Vector Coordinates. Zh. Vychisl. Mat. Mat. Fiz. 59(no. 5), 752–761 (2019).

    Google Scholar 

  138. Maksimov, V. I. Reconstruction of Disturbances in a Nonlinear System from Measurements of Some of the State-Vector Coordinates. Zh. Vychisl. Mat. Mat. Fiz 59(no. 11), 1836–1845 (2019).

    MathSciNet  Google Scholar 

  139. Kryazhimskii, A. & Maksimov, V. On Identification of Nonobservable Contamination Inputs. Environ. Modell. Software 20, 1057–1061 (2005).

    Article  Google Scholar 

  140. Osipov, Yu. S., Kryazhimskii, A. V. & Maksimov, V. I. Some Algorithms for Dynamical Reconstruction of Inputs. Tr. Inst. Mat. Mekh. UrO Ross. Akad. Nauk 17(no. 1), 129–161 (2011).

    MATH  Google Scholar 

  141. Krasovskii, N. N. & Subbotin, A. I. Pozitsionnye differentsialanye igry (Positional Differential Games). (Nauka, Moscow, 1974).

    Google Scholar 

  142. Krasovskii, N. N. Upravlenie dinamicheskoi sistemoi (Control for a Dynamical System). (Nauka, Moscow, 1985).

    Google Scholar 

  143. Tsykunov, A. M. Indirect Measurements-Based Compensation of Disturbances at Control of a Linear Plant. Autom. Remote Control 71(no. 4), 654–662 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  144. Silverman, L. D. M. Inversion of Multivariable Linear Systems. IEEE Trans. Automat. Control 14(no. 3), 270–276 (1969).

    Article  MathSciNet  Google Scholar 

  145. Il’in, A. V., Korovin, S. K. & Fomichev, V. V. Inversion Algorithms for Linear Controllable Systems. Differ. Uravn. 34(no. 6), 744–750 (1997).

    Google Scholar 

  146. Korovin, S. K., Il’in, A. V. & Fomichev, V. V. The Controllable Model Method in Inversion Problems for Dynamical Systems. Dokl. Ross. Akad. Nauk, Teor. Upravlen. 354(no. 2), 171–173 (1997).

    MATH  Google Scholar 

  147. Il’in, A. V., Korovin, S. K. & Fomichev, V. V. Robust Inversion of Vector Systems. Differ. Uravn. 34(no. 11), 1478–1486 (1998).

    MathSciNet  MATH  Google Scholar 

  148. Korovin, S. K. & Fomichev, V. V. Nablyudateli sostoyaniya dlya lineinykh sistem s neopredelennostayu (State Observers for Linear Systems with Uncertainty). (Fizmatlit, Moscow, 2007).

    Google Scholar 

  149. Il’in, A. V., Emel’yanov, S. V. & Fomichev, V. V. Synthesis of Robust Invertors of Minimal Order. Differ. Uravn. 45(no. 4), 575–585 (2009).

    MathSciNet  Google Scholar 

  150. Il’in, A. V., Korovin, S. K. & Fomichev, V. V. Metody robastnogo obrashcheniya dinamicheskikh sistem (Methods of Robust Inversion of Dynamical Systems). (Fizmatlit, Moscow, 2009).

    Google Scholar 

  151. Il’in, A. V., Korovin, S. K. & Fomichev, V. V. Inversion of Linear Dynamical Systems with Delay. Differ. Uravn. 48(no. 3), 405–413 (2012).

    MATH  Google Scholar 

  152. Atamas’, E. I., Il’in, A. V. & Fomichev, V. V. Inversion of vektornykh Systems with Delay. Differ. Uravn. 49(no. 11), 1363–1369 (2013).

    Google Scholar 

  153. Il’in, A. V., Korovin, S. K. & Fomichev, V. V. Inversion Algorithms for Linear Scalar Dynamical Systems: The Controllable Model Method. Differ. Uravn. 33(no. 3), 329–339 (1997).

    MathSciNet  Google Scholar 

  154. Utkin, V. I. Skolazyashchie rezhimy i ikh primeneniya v sistemakh s peremennoi strukturoi (Sliding Modes and Their Applications in Systems with Variable Structure). (Nauka, Moscow, 1974).

    Google Scholar 

  155. Utkin, V. I. Skolazyashchie rezhimy v zadachakh optimizatsii i upravleniya (Sliding Modes in Optimization and Control Problems). (Nauka, Moscow, 1981).

    Google Scholar 

  156. Tsykunov, A. M. Robastnoe upravlenie s kompensatsiei vozmushchenii (Robust Control with Disturbance Compensation). (Fizmatlit, Moscow, 2012).

    Google Scholar 

  157. Nikiforov, V. O. Adaptivnoe i robastnoe upravlenie s kompensatsiei vozmushchenii (Adaptive and Robust Control with Disturbance Compensation). (Nauka, St. Petersburg, 2003).

    Google Scholar 

  158. Khalil, H.K., Nonlinear Systems, Upper Saddle River: Prentice Hall, 2002, 3 ed. Translated under the title Nelineinye sistemy, Moscow–Izhevsk: Inst. Komp. Issled., 2009.

  159. Desoer, C. A. & Vidyasagar, M. Feedback Systems: Input-Output Properties. (Academic, New York, 1975). Translated under the title Sistemy s obratnoi svyaz’yu: vkhod-vykhodnye sootnosheniya, Moscow: Nauka, 1983.

    MATH  Google Scholar 

  160. Polushin, I. G., Fradkov, A. L. & Hill, D. D. Passivity and Passification of Nonlinear Systems. Autom. Remote Control 61(no. 3), 355–388 (2000).

    MathSciNet  MATH  Google Scholar 

  161. Corless, M. & Tu, J. State and Input Estimation for a Class of Uncertain Systems. Automatica 34(no. 6), 757–764 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  162. Kudva, P., Viswanadham, N. & Ramakrishna, A. Observers for Linear Systems with Unknown Inputs. IEEE Trans. Automat. Control AC-25, 113–115 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  163. Fradkov, A. L. Passification of Non-square Linear Systems and Feedback Yakubovich-Kalman-Popov Lemma. Eur. J. Control no. 6, 573–582 (2003).

    MATH  Google Scholar 

  164. Efimov, D. V. & Fradkov, A. L. Adaptive Tuning To Bifurcation for Time-Varying Nonlinear Systems. Automatica 42, 417–425 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  165. Andrievskii, B. R. & Fradkov, A. L. Method of Passification in Adaptive Control, Estimation, and Synchronization. Autom. Remote Control 67(no. 11), 1699–1731 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  166. Andrievskii, B. R. & Selivanov, A. A. New Results on the Application of the Passification Method. A Survey. Autom. Remote Control 79(no. 6), 957–995 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  167. Boyd, S., Ghaoui, L. E., Feron, E. & Balakrishnan, V. Linear Matrix Inequalities in System and Control Theory. (SIAM, Philadelphia, 1994).

    Book  MATH  Google Scholar 

  168. Churilov, A. N. & Gessen, A. V. Issledovanie lineinykh matrichnykh neravenstv. Putevoditel’ po programmnym paketam (Studying Linear Matrix Inequalities. A Guide to Software Packages). (S.-Peterburg. Gos. Univ., St. Petersburg, 2004).

    Google Scholar 

  169. Balandin, D. V. & Kogan, M. M. Ispolazovanie LMI toolbox paketa Matlab v sinteze zakonov upravleniya (Using the LMI Toolbox of the Matlab Suite for Synthesis of Control Laws). (NNGU im. N.I. Lobachevskogo, Nizhny Novgorod, 2006).

    Google Scholar 

  170. Xiong, Y. & Saif, M. Unknown Disturbance Inputs Estimation Based On A State Functional Observer Design. Automatica 39, 1389–1398 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  171. Kanellakopoulos, I., Kokotovic, P. V. & Morse, A. S. Systematic Design of Adaptive Controllers for Feedback Linearizable Systems. IEEE Trans. Automat. Control 36(no. 11), 1241–1253 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  172. Krstic, M., Kanellakopoulos, I. & Kokotovic, P. Nonlinear and Adaptive Control Design. (Wiley, New York, 1995).

    MATH  Google Scholar 

  173. Miroshnik, I. V., Nikiforov, V. O. & Fradkov, A. L. Nelineinoe i adaptivnoe upravlenie slozhnymi dinamicheskimi sistemami (Nonlinear and Adaptive Control for Complex Dynamical Systems). (Nauka, St. Petersburg, 2000).

    MATH  Google Scholar 

  174. Furtat, I. B. & Nekhoroshikh, A. N. The Backstepping Method for Structurally Uncertain Objects. Nauchno-Tekh. Vestn. Inform. Tekhn., Mekh. Optiki. 16(no. 1), 61–67 (2016).

    Google Scholar 

  175. Bekiaris-Liberis, N. & Krstic, M. Compensation of Transport Actuator Dynamics with Input-Dependent Moving Controlled Boundary. IEEE Trans. Automat. Control 63(no. 11), 3889–3896 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  176. Sorensen, A. J. & Egeland, O. Design of Ride Control System for Surface Effect Ships Using Dissipative Control. Automatica 31(no. 2), 183–199 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  177. Luenberger, D. G. Canonical Forms for Linear Multivariable Systems. IEEE Trans. Automat. Control 12(no. 3), 290–293 (1967).

    Article  MathSciNet  Google Scholar 

  178. Krstic, M. & Smyshlyaev, A. Boundary Control of PDEs: A Course On Backstepping Designs. (SIAM, Philadelphia, 2008).

    Book  MATH  Google Scholar 

  179. Bresch-Pietri, D. & Krstic, M. Adaptive Trajectory Tracking Despite Unknown Input Delay and Plant Parameters. Automatica 45(no. 9), 2074–2081 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  180. Isidori, A., Pyrkin, A. & Borisov, O. An Extension of a Lemma of Dayawansa and Its Application in the Design of Extended Observers for Nonlinear Systems. Automatica 106, 178–183 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  181. Gauthier, J.-P. & Kupka, I. Solutions to Part I Exercises, in Deterministic Observation Theory and Applications (pp. 195–216. Cambridge University Press, Cambridge, 2001).

    Book  Google Scholar 

  182. Dem’yanov, V. F. & Rubinov, A. M. Osnovy negladkogo analiza i kvazidifferentsialanoe ischislenie (Foundations of Nonsmooth Analysis and Quasidifferential Calculus). (Nauka, Moscow, 1990).

    MATH  Google Scholar 

  183. Borisov, O.I., Pyrkin, A.A., and Isidori, A.Application of Enhanced Extended Observer in Station-Keeping of a Quadrotor with Unmeasurable Pitch and Roll Angles, Proc. Joint 8th IFAC Symp. Mechatronic Systems and 11th IFAC Symp. Nonlinear Control Systems (MECHATRONICS & NOLCOS 2019), Vienna, Austria, IFAC, 2019.

  184. Bodson, M. & Douglas, S. C. Adaptive Algorithms for the Rejection of Sinusoidal Disturbances with Unknown Frequency. IFAC Proc. Volumes 29(no. 1), 5168–5173 (1996).

    Article  Google Scholar 

  185. Bodson, M. & Douglas, S. C. Adaptive Algorithms for the Rejection of Sinusoidal Disturbances with Unknown Frequency. Automatica 33(no. 12), 2213–2221 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  186. Marino, R. & Tomei, P. Global Estimation of n Unknown Frequencies. IEEE Trans. Automat. Control 47(no. 8), 1324–1328 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  187. Bobtsov, A. A., Efimov, D., Pyrkin, A. A. & Zolghadri, A. Switched Algorithm for Frequency Estimation with Noise Rejection. IEEE Trans. Automat. Control 57(no. 9), 2400–2404 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  188. Bobtsov, A. A. Output Control Algorithm with The Compensation of Biased Harmonic Disturbances. Autom. Remote Control 69(no. 8), 1289–1296 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  189. Bobtsov, A. A. & Pyrkin, A. A. Compensation of Unknown Sinusoidal Disturbances in Linear Plants of Arbitrary Relative Degree. Autom. Remote Control 70(no. 3), 449–456 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  190. Bobtsov, A. A. Robust Output-Control for a Linear System with Uncertain Coefficients. Autom. Remote Control 63(no. 11), 1794–1802 (2002).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrievsky, B., Furtat, I. Disturbance Observers: Methods and Applications. I. Methods. Autom Remote Control 81, 1563–1610 (2020). https://doi.org/10.1134/S0005117920090015

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117920090015

Keywords

Navigation