Skip to main content
Log in

Combined electrohydraulic and flexible pin die forming: a novel high strain rate forming die setup

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Electrohydraulic forming (EHF) is one of the high-velocity metal forming processes that can significantly increase the formability of metals compared with quasi-static forming processes. On the other way, multi-point forming (MPF) is one of the flexible forming methods that provides different sheet metal geometries by varying the height of the pins. The purpose of this study is to take the advantages of both the EHF and MPF processes by presenting a design for flexible dies to be used in the electrohydraulic forming process. As the first step, electrohydraulic free-forming was performed to investigate the reproducibility and to obtain some of the parameters needed for simulations. Then, the ABAQUS finite element software and Coupled Eulerian-Lagrangian method were used to simulate this process. Afterward, the experimental tests were undergone to determine the defects of the forming process using a flexible pin die. Various geometries were produced by conducting experiments and inserting the proper elastic layer to eliminate the dimpling. The reproducibility and validity of the flexible pin die forming simulation was investigated by analyzing the dome height and final profile of the specimens. After ensuring the accuracy of the simulation, a thicker elastic layer was used to remove the dimpling defect completely. The results of the experiments and simulations illustrated that the use of flexible pin die is possible in the process of EHF and the proper final forms can be obtained by applying the appropriate thickness of the polyurethane layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Cheah L, Heywood J (2011) Meeting US passenger vehicle fuel economy standards in 2016 and beyond. Energy Policy 39(1):454–466. https://doi.org/10.1016/j.enpol.2010.10.027

    Article  Google Scholar 

  2. Rohatgi A, Stephens EV, Soulami A, Davies RW, Smith MT (2011) Experimental characterization of sheet metal deformation during electro-hydraulic forming. J Mater Process Technol 211(11):1824–1833. https://doi.org/10.1016/j.jmatprotec.2011.06.005

    Article  Google Scholar 

  3. Balanethiram V, Hu X, Altynova M, Daehn GS (1994) Hyperplasticity: enhanced formability at high rates. J Mater Process Technol 45(1-4):595–600. https://doi.org/10.1016/0924-0136(94)90404-9

    Article  Google Scholar 

  4. Fenton GK, Daehn GS (1998) Modeling of electromagnetically formed sheet metal. J Mater Process Technol 75(1-3):6–16. https://doi.org/10.1016/S0924-0136(97)00287-2

    Article  Google Scholar 

  5. Golovashchenko SF, Mamutov VS, Dmitriev VV, Sherman AM (2003) Formability of sheet metal with pulsed electromagnetic and electrohydraulic technologies. In: ALUMINUM 2003, pp 99–110 Conference held during the TMS Annual Meeting

    Google Scholar 

  6. Golovashchenko SF, Gillard AJ, Mamutov AV (2013) Formability of dual phase steels in electrohydraulic forming. J Mater Process Technol 213(7):1191–1212. https://doi.org/10.1016/j.jmatprotec.2013.01.026

    Article  Google Scholar 

  7. Zohoor M, Mousavi SM (2018) Evaluation and optimization of effective parameters in electrohydraulic forming process. J Braz Soc Mech Sci Eng 40(11):524. https://doi.org/10.1007/s40430-018-1449-1

    Article  Google Scholar 

  8. Yutkin LA (1955) Electrohydraulic effect. Mashgiz, Moscow, p 5–22

  9. Oyane M, Masaki S (1964) Fundamental study on electrohydraulic forming. Bull JSME 7(26):474–480. https://doi.org/10.1299/jsme1958.7.474

    Article  Google Scholar 

  10. Oyane M, Masaki S (1965) Fundamental study on electrohydraulic forming: II. The effect of kinds of fuse wires and circuit inductance on pressure pulse. Bull JSME 8(30):251–258. https://doi.org/10.1299/jsme1958.8.251

    Article  Google Scholar 

  11. Oyane M, Masaki S (1965) Fundamental study on electrohydraulic forming: III. The effect of diameter of fuse wire and circuit inductance on pressure pulse. Bull JSME 8(30):259–263. https://doi.org/10.1299/jsme1958.8.259

    Article  Google Scholar 

  12. Rohatgi A, Stephens EV, Davies RW, Smith MT, Soulami A, Ahzi S (2012) Electro-hydraulic forming of sheet metals: Free-forming vs. conical-die forming. J Mater Process Technol 212(5):1070–1079. https://doi.org/10.1016/j.jmatprotec.2011.12.014

    Article  Google Scholar 

  13. Samei J, Green DE, Golovashchenko S, Hassannejadasl A (2013) Quantitative microstructural analysis of formability enhancement in dual phase steels subject to electrohydraulic forming. J Mater Eng Perform 22(7):2080–2088. https://doi.org/10.1007/s11665-012-0438-2

    Article  Google Scholar 

  14. Gillard AJ, Golovashchenko SF, Mamutov AV (2013) Effect of quasi-static prestrain on the formability of dual phase steels in electrohydraulic forming. J Manuf Process 15(2):201–218. https://doi.org/10.1016/j.jmapro.2012.12.005

    Article  Google Scholar 

  15. Ahmed M, Kumar DR, Nabi M (2017) Enhancement of formability of AA5052 alloy sheets by electrohydraulic forming process. J Mater Eng Perform 26(1):439–452. https://doi.org/10.1007/s11665-016-2446-0

    Article  Google Scholar 

  16. Woetzel M, Löffler M, Spahn E, Ritter H (2006) Preliminary examination of high-velocity metal-shaping with electrical wire explosion. In: Proceeding of 1st Euro-Asian Pulsed Power Conference, pp 18–22

    Google Scholar 

  17. Bonnen JJ, Golovashchenko SF, Dawson SA, Mamutov AV (2013) Electrode erosion observed in electrohydraulic discharges used in pulsed sheet metal forming. J Mater Eng Perform 22(12):3946–3958. https://doi.org/10.1007/s11665-013-0690-0

    Article  Google Scholar 

  18. Björkström D (2008) FEM simulatoion of electrohydraulic forming. MSc Thesis, KTH Royal Institute of Technology, Stockholm

  19. Melander A, Delic A, Björkblad A, Juntunen P, Samek L, Vadillo L (2013) Modelling of electro hydraulic free and die forming of sheet steels. Int J Mater Form 6(2):223–231. https://doi.org/10.1007/s12289-011-1080-5

    Article  Google Scholar 

  20. Jenab A, Green DE, Alpas AT, Golovashchenko SF (2018) Experimental and numerical analyses of formability improvement of AA5182-O sheet during electro-hydraulic forming. J Mater Process Technol 255:914–926. https://doi.org/10.1016/j.jmatprotec.2017.12.037

    Article  Google Scholar 

  21. Li M, Nakamura K, Watanabe S, Akutsu Y (1992) Study of the basic principles (1st report: research on multi-point forming for sheet metal). In: Proc. of the Japanese Spring conf. for Technology of Plasticity, pp 519–522

    Google Scholar 

  22. Li M, Liu Y, Su S, Li G (1999) Multi-point forming: a flexible manufacturing method for a 3-d surface sheet. J Mater Process Technol 87(1-3):277–280. https://doi.org/10.1016/S0924-0136(98)00364-1

    Article  Google Scholar 

  23. Li M-Z, Cai Z-Y, Sui Z, Yan Q (2002) Multi-point forming technology for sheet metal. J Mater Process Technol 129(1-3):333–338. https://doi.org/10.1016/S0924-0136(02)00685-4

    Article  Google Scholar 

  24. Quan G-Z, Ku T-W, Kang B-S (2011) Improvement of formability for multi-point bending process of AZ31B sheet material using elastic cushion. Int J Precis Eng Manuf 12(6):1023–1030. https://doi.org/10.1007/s12541-011-0136-2

    Article  Google Scholar 

  25. Wang S, Cai Z, Li M (2010) Numerical investigation of the influence of punch element in multi-point stretch forming process. Int J Adv Manuf Technol 49(5-8):475–483. https://doi.org/10.1007/s00170-009-2420-1

    Article  Google Scholar 

  26. Liu Q, Lu C, Fu W, Tieu K, Li M, Gong X (2012) Optimization of cushion conditions in micro multi-point sheet forming. J Mater Process Technol 212(3):672–677. https://doi.org/10.1016/j.jmatprotec.2011.07.015

    Article  Google Scholar 

  27. Zareh-Desari B, Davoodi B, Vedaei-Sabegh A (2015) Investigation of deep drawing concept of multi-point forming process in terms of prevalent defects. Int J Mater Form 10(2):193–203. https://doi.org/10.1007/s12289-015-1268-1

    Article  Google Scholar 

  28. Paunoiu V, Teodor V, Baraoiu N (2015) The Hydro-Multipoint forming process of complex sheet metal parts. J Mach Eng 15(3):106–116

  29. Liu W, Chen Y-Z, Xu Y-C, Yuan S-J (2016) Evaluation on dimpling and geometrical profile of curved surface shell by hydroforming with reconfigurable multipoint tool. Int J Adv Manuf Technol 86(5-8):2175–2185. https://doi.org/10.1007/s00170-015-8264-y

    Article  Google Scholar 

  30. Nourmohammadi AA, Elyasi M, Mirnia MJ (2019) Flexibility improvement in two-point incremental forming by implementing multi-point die. Int J Adv Manuf Technol 102(9-12):2933–2952. https://doi.org/10.1007/s00170-019-03307-y

    Article  Google Scholar 

  31. Davoodi B, Zareh-Desari B (2014) Assessment of forming parameters influencing spring-back in multi-point forming process: a comprehensive experimental and numerical study. Mater Des 59:103–114. https://doi.org/10.1016/j.matdes.2014.02.043

    Article  Google Scholar 

  32. Abosaf M, Essa K, Alghawail A, Tolipov A, Su S (2017) Optimisation of multi-point forming process parameters. Int J Adv Manuf Technol 92(5-8):1849–1859. https://doi.org/10.1007/s00170-017-0155-y

    Article  Google Scholar 

  33. Halliday D, Resnick R, Walker J (2013) Fundamentals of physics, 10th edn. John Wiley & Sons, New York, p 717–745

  34. Johnson GR, Cook WH (1985) Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng Fract Mech 21(1):31–48

    Article  Google Scholar 

  35. Lesuer DR, Kay G, LeBlanc M (2001) Modeling large-strain, high-rate deformation in metals. Lawrence Livermore National Lab

  36. Zhu D, Mobasher B, Rajan S, Peralta P (2011) Characterization of dynamic tensile testing using aluminum alloy 6061-T6 at intermediate strain rates. J Eng Mech 137(10):669–679. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000264

    Article  Google Scholar 

  37. Hajializadeh F, Mashhadi MM (2015) Investigation and numerical analysis of impulsive hydroforming of aluminum 6061-T6 tube. J Manuf Process 20:257–273. https://doi.org/10.1016/j.jmapro.2015.06.027

    Article  Google Scholar 

  38. Ahmadzadeh M, Saranjam B, Fard AH, Binesh A (2014) Numerical simulation of sphere water entry problem using Eulerian–Lagrangian method. Appl Math Model 38(5-6):1673–1684. https://doi.org/10.1016/j.apm.2013.09.005

    Article  MathSciNet  Google Scholar 

  39. Dobratz B (1981) LLNL Explosive Handbook, UCRL-52997. Lawrence Livermore National Laboratory, Livermore

    Google Scholar 

  40. Belhassen L, Koubaa S, Wali M, Dammak F (2016) Numerical prediction of springback and ductile damage in rubber-pad forming process of aluminum sheet metal. Int J Mech Sci 117:218–226. https://doi.org/10.1016/j.ijmecsci.2016.08.015

    Article  Google Scholar 

  41. Serway RA, Jewett JW, Beichner RJ (2000) ISBN 0030226570) Physics for scientists and engineers with modern physics, 5th edn. Saunders College

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this work.

Corresponding author

Correspondence to Mohammad Bakhshi-Jooybari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Code availability

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zavari, S., Bakhshi-Jooybari, M. & Gorji, H. Combined electrohydraulic and flexible pin die forming: a novel high strain rate forming die setup. Int J Adv Manuf Technol 111, 2171–2187 (2020). https://doi.org/10.1007/s00170-020-06242-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-06242-5

Keywords

Navigation