Skip to main content
Log in

Motion-Induced Magnetic Barkhausen Noise for Evaluating Applied Stress in Pipelines

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

Stresses have great influences on the mechanical performance and corrosion resistance of pipelines. Magnetic Barkhausen noise (MBN) as an effective non-destructive testing method for evaluating stress in ferromagnetic materials has been widely studied in recent decades. Different from traditional MBN methods based on a time-varying magnetic field, this paper proposed a novel MBN method to induce Barkhausen noise based on rotating permanent magnets, which achieves efficient stress measurement in pipelines. Under different rotating speeds, the characterization of surface tangential excitation field induced by rotating permanent magnets are analyzed by Hall measurements and extrapolation method. Experimental results validate that the proposed method has a good detectability and sensitivity of stress measurement in pipelines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Mirzaee-Sisan, A., Wu, G.: Residual stress in pipeline girth welds-A review of recent data and modelling. Int. J. Pres. Ves. Pip. 169, 142–152 (2019)

    Article  Google Scholar 

  2. Cunha, D.J.S., Benjamin, A.C., Silva, R.C.C., Guerreiro, J.N.C., Drach, P.R.C.: Fatigue analysis of corroded pipelines subjected to pressure and temperature loadings. Int. J. Pres. Ves. Pip. 113, 15–24 (2014)

    Article  Google Scholar 

  3. Ossai, C.I., Boswell, B., Davies, I.J.: Pipeline failures in corrosive environments–A conceptual analysis of trends and effects. Eng. Fail. Anal. 53, 36–58 (2015)

    Article  Google Scholar 

  4. Sharma, S.K., Maheshwari, S.: A review on welding of high strength oil and gas pipeline steels. J. Nat. Gas Sci. Eng. 38, 203–217 (2017)

    Article  Google Scholar 

  5. Gou, R., Zhang, Y., Xu, X., Sun, L., Yang, Y.: Residual stress measurement of new and in-service X70 pipelines by X-ray diffraction method. NDT & E Int. 44(5), 387–393 (2011)

    Article  Google Scholar 

  6. Woo, W., Em, V., Hubbard, C.R., Lee, H., Park, K.S.: Residual stress determination in a dissimilar weld overlay pipe by neutron diffraction. Mater. Sci. Eng. A 528(27), 8021–8027 (2011)

    Article  Google Scholar 

  7. Javadi, Y., Pirzaman, H.S., Raeisi, M.H., Najafabadi, M.A.: Ultrasonic inspection of a welded stainless steel pipe to evaluate residual stresses through thickness. Mater. Des. 49, 591–601 (2013)

    Article  Google Scholar 

  8. Wang, P., Zhu, S., Tian, G.Y., Wang, H., Wilson, J., Wang, X.: Stress measurement using magnetic Barkhausen noise and metal magnetic memory testing. Meas. Sci. Technol. 21(5), 055703 (2010)

    Article  Google Scholar 

  9. Yelbay, H., Cam, I., Gür, C.: Non-destructive determination of residual stress state in steel weldments by magnetic Barkhausen noise technique. NDT & E Int. 43(1), 29–33 (2010)

    Article  Google Scholar 

  10. Moorthy, V., Shaw, B.A., Hopkins, P.: Surface and subsurface stress evaluation in case-carburised steel using high and low frequency magnetic Barkhausen emission measurements. J. Magn. Magn. Mater. 299(2), 362–375 (2006)

    Article  Google Scholar 

  11. Capó-Sánchez, J., Pérez-Benitez, J., Padovese, L.R.: Analysis of the stress dependent magnetic easy axis in ASTM 36 steel by the magnetic Barkhausen noise. NDT & E Int. 40(2), 168–172 (2007)

    Article  Google Scholar 

  12. Noris, L.F., Padovese, L.R., Tavares, S.S.M., Pardal, J.M.: Continuous scanning technique with Barkhausen magnetic noise for carbon steel sheets. Mater. Res. 22, e20180366 (2019)

    Article  Google Scholar 

  13. Barkhausen, H.: Two with help of new repeating rediscovered appearances by H Barkhausen-The silence during unmagnetising of iron. Physikalische Zeitschrift 20, 401–403 (1919)

    Google Scholar 

  14. Alessandro, B., Beatrice, C., Bertotti, G., Montorsi, A.: Domain-wall dynamics and Barkhausen effect in metallic ferromagnetic materials. J. Appl. Phys. 68(6), 2901–2907 (1990)

    Article  Google Scholar 

  15. Moorthy, V., Shaw, B.A., Mountford, P., Hopkins, P.: Magnetic Barkhausen emission technique for evaluation of residual stress alteration by grinding in case-carburised En36 steel. Acta Mater. 53(19), 4997–5006 (2005)

    Article  Google Scholar 

  16. Gauthier, J., Krause, T.W., Atherton, D.L.: Measurement of residual stress in steel using the magnetic Barkhausen noise technique. NDT & E Int. 31(1), 23–31 (1998)

    Article  Google Scholar 

  17. Alfred, E., Gary, L.: Crouch: Burkhardt: in-line stress measurement by the continuous Barkhausen method. In: Proceedings of IPC 2004 International Pipeline Conference, Calgary, Alberta, Canada, October 4–8 (2004)

  18. Franco, F.A., Padovese, L.R.: Non-destructive scanning for applied stress by the continuous magnetic Barkhausen noise method. J. Magn. Magn. Mater. 446, 231–238 (2018)

    Article  Google Scholar 

  19. Caldas-Morgan, M., Padovese, L.R.: Fast detection of the magnetic easyaxis on steel sheet using the continuous rotational Barkhausen method. NDT & E Int. 45, 148–155 (2012)

    Article  Google Scholar 

  20. Ortega-Labra, O., Le Manh, T., Martinez-Ortiz, P., Hallen, J.M., Perez-Benitez, J.A.: A novel system for non-destructive evaluation of surface stress inpipelines using rotational continuous magnetic Barkhausen noise. Measurement 136, 761–774 (2019)

    Article  Google Scholar 

  21. Mandal, K., Loukas, M.E., Corey, A., Atherton, D.L.: Magnetic Barkhausen noise indications of stress concentrations near pits of various depths. J. Magn. Magn. Mater. 175(3), 255–262 (1997)

    Article  Google Scholar 

  22. Moorthy, V., Shaw, B.A., Evan, J.T.: Evaluation of tempering induced changes in the hardness profile of case-carburised EN36 steel using magnetic Barkhausen noise analysis. NDT & E Int. 36(1), 43–49 (2003)

    Article  Google Scholar 

  23. Stupakov, A., Perevertov, O., Zablotskii, V.: A system for controllable magnetic measurements of hysteresis and Barkhausen noise. IEEE Trans. Instrum. Meas. 65(5), 1087–1097 (2016)

    Article  Google Scholar 

  24. Perevertov, O.: Measurement of the surface field on open magnetic samples by the extrapolation method. Rev. Sci. Instrum. 76(10), 104701 (2005)

    Article  Google Scholar 

  25. Perevertov, O.: Increase of precision of surface magnetic field measurements by magnetic shielding. Meas. Sci. Technol. 20(5), 055107 (2009)

    Article  Google Scholar 

  26. Wu, J., Zhu, J., Tian, G.Y., Xia, H.: Study of rotating magnet array-based motion-induced eddy current thermography. IEEE Tran. Magn. 54(12), 1–5 (2018)

    Article  Google Scholar 

  27. Moorthy, V.: Important factors influencing the magnetic Barkhausen noise profile. IEEE Trans. Magn. 52(4), 1–13 (2015)

    Article  Google Scholar 

  28. Vashista, M., Moorthy, V.: Influence of applied magnetic field strength and frequency response of pick-up coil on the magnetic Barkhausen noise profile. J. Magn. Magn. Mater. 345, 208–214 (2013)

    Article  Google Scholar 

  29. Ding, S., Tian, G.Y., Moorthy, V., Wang, P.: New feature extraction for applied stress detection on ferromagnetic material using magnetic Barkhausen noise. Measurement 73, 515–519 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work is partially supported by National Natural Science Foundation of China (Grant No. 51907131&51505308), the Fundamental Research Funds for Central Universities, the Science and Technology Project of Sichuan Province (Grant Number 20ZDYF2964 & 2020JDRC0060), and the Jiangsu Province Natural Science Foundation for the Youth (No. BK20180687).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erlong Li.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Liu, C., Li, E. et al. Motion-Induced Magnetic Barkhausen Noise for Evaluating Applied Stress in Pipelines. J Nondestruct Eval 39, 83 (2020). https://doi.org/10.1007/s10921-020-00729-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-020-00729-7

Keywords

Navigation