Skip to main content
Log in

Highly Sensitive Immunofluorescence Assay of Prostate-Specific Antigen Using Silver Nanoparticles

  • Published:
Journal of Applied Spectroscopy Aims and scope

We consider the possibilities of applying the plasmon-enhanced fluorescence of monoclonal antibodies labelled with fluorescein isothiocyanate (FITC) to the prostate-specific antigen (PSA) for increasing the immunofluorescence analysis sensitivity. An immunochemical test system featuring two center binding using a pair of noncompeting monoclonal antibodies in combination with silver plasmon nanoparticles was used for the first time for determining the PSA concentration. The advantages over the standard PSA immunofluorescence assay are as follows. The intensity of the recorded fluorescent signal is enhanced by 2.3–3.2 times in the presence of silver nanoparticles in comparison with the signal of the test system on the intact surface of a polystyrene plate. The signal-to-noise ratio is increased by up to two times. In addition to the plasmon-enhanced fluorescence, the effect of an intermediate polyelectrolyte layer for enhancement of the adsorption capacity of the primary PSA antibodies is shown, which, in turn, affects the fluorescence signal intensity. Growth of the plasmon fluorescence enhancement factor with increasing concentration of the labelled antibodies indicates suppression of the self-quenching of the fluorescent labels by metal nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. S. Kamyshnikov, Oncomarkers: Methods of Determination, Reference Values, and Test Interpretation [in Russian], MED Press Inform, Moscow (2011).

  2. V. S. Pervyi and V. F. Sukhoi, Oncomarkers: Clinical Diagnostic Handbook [in Russian], Feniks, RostovonDon, Russia (2012).

  3. P. Karami, H. Khoshsafar, M. JohariAhar, F. Arduini, A. Afkhami, and H. Bagheri, Spectrochim. Acta A, 222, 117218 (2019).

    Article  Google Scholar 

  4. P. Damborský, N. Madaboosi, V. Chu, J. P. Conde, and J. Katrlik, Chem. Papers, 69, 143–149 (2013).

    Google Scholar 

  5. F. Tan, Y. Yang, X. Xie, L. Wang, K. Deng, X. Xia, X. Yang, and H. Huang, Analyst, 143, 5038–5045 (2018).

    Article  ADS  Google Scholar 

  6. H.-M. Kim, J.-H. Park, D. H. Jeong, H. Y. Lee, and S. K. Lee, Sens. Actuator BChem., 273, 891–898 (2018).

    Article  Google Scholar 

  7. J. W. Attridge, P. B. Daniels, J. K. Deacon, G. A. Robinson, and G. P. Davidson, Biosens. Bioelectron., 6, 201–214 (1991).

    Article  Google Scholar 

  8. F. Yu, B. Persson, S. Lofas, and W. Knoll, Anal. Chem., 76, 6765–6770 (2004).

    Article  Google Scholar 

  9. K. Sokolov, G. Chumanov, and T. M. Cotton, Anal. Chem., 70, 3898–3905 (1998).

    Article  Google Scholar 

  10. S. M. Tabakman, J. Lau, J. T. Robinson, J. Price, S. P. Sherlock, H. Wang, B. Zhang, Z. Chen, S. Tangsombatvisit, J. A. Jarrell, P. J. Utz, and H. Dai, Nat. Commun., 2, 466 (2011).

    Article  ADS  Google Scholar 

  11. L. Zhou, F. Ding, H. Chen, W. Ding, W. Zhang, and S. Y. Chou, Anal. Chem., 84, 4489–4495 (2012).

    Article  Google Scholar 

  12. R. Zhang, Z. Wang, C. Song, J. Yang, and Y. Cui, J. Fluoresc., 23, 551–559 (2013).

    Article  Google Scholar 

  13. O. Kulakovich, N. Strekal, M. Artemyev, A. Stupak, S. Maskevich, and S. Gaponenko, Nanotechnol., 17, 5201–5206 (2006).

    Article  ADS  Google Scholar 

  14. J. R. Lakowicz, J. Malicka, S. D'Auria, and I. Gryczynski, Anal. Biochem., 320, 13–20 (2003).

    Article  Google Scholar 

  15. K. Okuda, Digest. Dis. Sci., 31, 133S–146S (1986).

    Article  Google Scholar 

  16. Y. Wang, A. Brunsen, U. Jonas, J. Dostalek, and W. Knoll, Anal. Chem., 81, 9625–9632 (2009).

    Article  Google Scholar 

  17. L.-H. Jin, S.-M. Li, and Y.-H. Cho, Biosens. Bioelectron., 33, 284–287 (2012).

    Article  Google Scholar 

  18. H. Y. Song, T. I. Wong, A. Sadovoy, L. Wu, P. Bai, J. Deng, S. Guo, Y. Wang, W. Knoll, and X. Zhou, Lab. Chip., 15, 253–263 (2015).

    Article  Google Scholar 

  19. T. Kaya, T. Kaneko, S. Kojima, Y. Nakamura, Y. Ide, K. Ishida, Y. Suda, and K. Yamashita, Anal. Chem., 87, 1797–1803 (2015).

    Article  Google Scholar 

  20. Q. Zheng, L. Wu, T. I. Wong, J. Zhang, X. Liu, X. Zhou, P. Bai, B. Liedberg, and Y. Wang, Int. J. Nanomed., 12, 2307–2314 (2017).

    Article  Google Scholar 

  21. O. S. Kulakovich, M. V. Artem’ev, A. P. Stupak, S. A. Maskevich, and S. V. Gaponenko, O. S. Kulakovich, M. V. Artem’ev, A. P. Stupak, S. A. Maskevich, and S. V. Gaponenko, J. Appl. Spectrosc., 73, 892–896 (2006).

  22. D. V. Guzatov, S. V. Vaschenko, V. V. Stankevich, A. Ya. Lunevich, V. F. Glukhov, and S. V. Gaponenko, J. Phys. Chem. C, 116, 10723–10733 (2012).

    Article  Google Scholar 

  23. A. A. Ramanenka, S. V. Vaschenko, V. V. Stankevich, A. Ya. Lunevich, Yu. F. Glukhov, and S. V. Gaponenko, J. Appl. Spectrosc., 81, 222–225 (2014).

    Article  ADS  Google Scholar 

  24. S. Vaschenko, A. Ramanenka, O. Kulakovich, A. Muravitskaya, D. Guzatov, A. Lunevich, A. Ya. Lunevich, Y. F. Glukhov, and S. V. Gaponenko, Proc. Eng., 149, 57–66 (2016).

  25. D. V. Guzatov, S. V. Gaponenko, and H. V. Demir, Plasmon., 13, 2133–2140 (2018).

    Article  Google Scholar 

  26. P. C. Lee and D. Meisel, J. Phys. Chem., 86, 3391–3395 (1982).

    Article  Google Scholar 

  27. S. V. Gaponenko, Introduction to Nanophotonics, CUP, Cambridge (2010), p. 465.

    Book  Google Scholar 

  28. F. R. Aussenegg, A. Leitner, M. E. Lippitsch, H. Reinisch, and M. Riegler, Surf. Sci., 189/190, 935–945 (1987).

  29. N. Strekal, A. Maskevich, S. Maskevich, J. C. Jardillier, and I. Nabiev, Biopolymers (Biospectroscopy), 57, 325–328 (2000).

    Article  Google Scholar 

  30. K. Takahashi, M. Fukada, M. Kawai, and T. Yokochi, Immunolog. Method., 153, 67–71 (1992).

    Article  Google Scholar 

  31. L. S. Epstein and J. K. Lunney, J. Immunolog. Method., 76, 63–72 (1985).

    Google Scholar 

  32. N. A. Stearns, S. Zhou, M. Petri, S. R. Binder, and D. S. Pisetsky, PLoS ONE, 11, e0161818 (2016).

    Article  Google Scholar 

  33. F. Caruso, Adv. Mater., 13, 11–22 (2001).

    Article  Google Scholar 

  34. A. Muravitskaya, O. Kulakovich, P. M. Adam, and S. Gaponenko, Phys. Status Solidi (b), 255, 1700491 (2018).

    Google Scholar 

  35. A. C. McGeachy, N. Dalchand, E. R. Caudill, T. Li, M. Doğangün, L. L. Olenick, H. Chang, J. A. Pedersen, and F. M. Geiger, Phys. Chem. Chem. Phys., 20, 10846–10856 (2018).

    Article  Google Scholar 

  36. V. A. Galievsky, A. S. Stasheuski, and S. N. Krylov, Anal. Chem., 89, 11122–11128 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. S. Kulakovich.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 87, No. 5, pp. 796–803, September–October, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koktysh, I.V., Melnikova, Y.I., Kulakovich, O.S. et al. Highly Sensitive Immunofluorescence Assay of Prostate-Specific Antigen Using Silver Nanoparticles. J Appl Spectrosc 87, 870–876 (2020). https://doi.org/10.1007/s10812-020-01083-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-020-01083-2

Keywords

Navigation