Skip to main content

Advertisement

Log in

Optical Method Based on a Gaseous Scintillator for Neutron Energy Spectrum Measurements

  • Published:
Journal of Applied Spectroscopy Aims and scope

The neutron energy spectrum is one of the most important characteristic parameters. A novel optical measurement method is proposed. The purpose of the method is to determine the neutron spectra according to the recoil proton track length. The recoil protons deposit energy along the track and excite scintillator luminescence. The luminescence image directly reflects the neutron energy spectra. The Geant4 simulation toolkit is used to study the characteristics of the recoil proton luminescence distribution and determine the detector system response. A reconstruction algorithm based on the potential reduction interior point is developed and applied to spectrum unfolding. This method has the advantages of an intuitive measurement, good energy resolution, suitability for various charged particle beams, a wide energy range, convenience, and an adjustable range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. O. Jarvis, Plasma Phys. Controlled Fusion, 36, No. 2, 209–244 (1994).

    Article  ADS  Google Scholar 

  2. B. Wolle, Phys. Rep., 312, 1–86 (1999).

    Article  ADS  Google Scholar 

  3. V. Y. Glebov, C. Stoeckl, T. C. Sangster, et al., Rev. Sci. Instrum., 75, No. 10, 3559–3562 (2004).

    Article  ADS  Google Scholar 

  4. Z. A. Ali, V. Y. Glebov, M. Cruz, et al., Rev. Sci. Instrum., 79, No. 10, 3559 (2008).

    Article  Google Scholar 

  5. D. T. Casey, J. A. Frenje, M. Gatu Johnson, et al., Rev. Sci. Instrum., 84, No. 4, 043506 (2013).

    Article  ADS  Google Scholar 

  6. D. T. Casey, J. A. Frenje, M. G. Johnson, et al., Rev. Sci. Instrum., 83, No. 10, 10D912 (2012).

    Article  Google Scholar 

  7. E. Mendoza, D. Cano-Ott, C. Guerrero, et al., Nucl. Instrum. Methods Phys. Res. A, 768, 55–61 (2014).

    Article  ADS  Google Scholar 

  8. Lénárd Pál and Imre Pázsit, Nucl. Instrum. Methods Phys. Res. A, 693, 26–50 (2012).

    Article  ADS  Google Scholar 

  9. M. J. Koskelo, W. A. Sielaff, D. L. Hall, et al., J. Radioanal. Nucl. Chem., 248, No. 2, 257–262 (2001).

    Article  Google Scholar 

  10. L. Chen, X. P. Ouyang, Z. B. Zhang, et al., World Academy of Science, Engineering and Technology (2011).

  11. E. D. Bourret-Courchesne, S. E. Derenzo, and M. J. Weber, Nucl. Instrum. Methods Phys. Res. A, 601, No. 3, 358–363 (2009).

    Article  ADS  Google Scholar 

  12. G. Laczko, V. Dangendorf, M. Krämer, et al., Nucl. Instrum. Methods Phys. Res. A, 535, Nos. 1–2, 216–220 (2004).

    Article  ADS  Google Scholar 

  13. U. Titt, A. Breskin, R. Chechik, et al., Nucl. Instrum. Methods Phys. Res. A, 416, No. 1, 85–99 (1998).

    Article  ADS  Google Scholar 

  14. F. A. F. Fraga, L. M. S. Margato, S. T. G. Fetal, et al., Nucl. Instrum. Methods Phys. Res. A, 478, Nos. 1–2, 357–361 (2002).

    Article  ADS  Google Scholar 

  15. F. A. F. Fraga, L. M. S. Margato, S. T. G. Fetal, et al., Nucl. Instrum. Methods Phys. Res. A, 513, No. 1, 379–387 (2003).

    Article  ADS  Google Scholar 

  16. E. Aprile, A. E. Bolotnikov, A. I. Bolozdynya, and T. Doke, Noble Gas Detectors (2006).

  17. J. Liu, X. Ouyang, L. Chen, et al., Nucl. Instrum. Methods Phys. Res. A, 694 (Complete), 157–161 (2012).

    Article  ADS  Google Scholar 

  18. J. Allison et al., Nucl. Instrum. Methods Phys. Res. A, 835, 186–225 (2016).

    Article  ADS  Google Scholar 

  19. N. S. Phan, R. J. Lauer, E. R. Lee, et al., Astroparticle Phys., 84, 82–96 (2016).

    Article  ADS  Google Scholar 

  20. I. Mor, D. Vartsky, V Dangendorf, et al., J. Instrum., 12, No. 12, C12022 (2017).

    Article  Google Scholar 

  21. J. Zhang, X. Ouyang, X. Zhang, et al., Nucl. Instrum. Methods Phys. Res. A, 816, 125–130 (2016).

    Article  ADS  Google Scholar 

  22. S. Agosteo, A. Fazzi, M. Introini, M. Lorenzoli, and A. Pola, Radiat. Measur., 85, 1–17 (2016).

    Article  ADS  Google Scholar 

  23. H. Shahabinejad and M. Sohrabpour, Radiat. Phys. Chem., 136, 9–16 (2017).

    Article  ADS  Google Scholar 

  24. H. Jing, L. Jinliang, Z. Zhongbing, et al., Sci. Rep., 8, No. 1, 13363 (2018).

    Article  Google Scholar 

  25. G. Wang, R. Han, X. Ouyang, et al., Chin. Phys. C, 41, No. 5, 181–185 (2017).

    Google Scholar 

  26. D. W. Freeman, D. R. Edwards, and A. E. Bolon, Nucl. Instrum. Methods Phys. Res. A, 425, No. 3, 549–576 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Wang.

Additional information

Published in Zhurnal Prikladnoi Spektroskopii, Vol. 87, No. 5, pp. 839–846, September–October, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Zhang, L., Song, W. et al. Optical Method Based on a Gaseous Scintillator for Neutron Energy Spectrum Measurements. J Appl Spectrosc 87, 911–918 (2020). https://doi.org/10.1007/s10812-020-01088-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-020-01088-x

Keywords

Navigation