Skip to main content

Advertisement

Log in

Electrodeposited mixed ZnS–CdS photoelectrode for natural dye-sensitized solar cells (NDSSC)

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Photoelectrodes and sensitizers are the vital components of future low-cost dye-sensitized solar cells which are used to meet the present energy demand. Herein, ZnS–CdS thin film photoelectrodes (WE) prepared on steel substrate by electrodeposition method are sensitized by chlorophyll extract and combined with graphite counter electrode, both being dipped in sulphide–polysulphide redox electrolytes (S2−/S 2−n ) to form the dye-sensitized solar cells with the following configuration:\({\text{photoelectrode}} + {\text{dye}}//{\text{Na}}_{2} {\text{S}}(1{\text{M}}) + {\text{NaOH}}(1{\text{M}}) + {\text{S}}(1{\text{M}})//{\text{C}}({\text{Graphite}}).\)The photoelectrochemical characterizations of the dye-sensitized thin film photoelectrodes under investigation include current–voltage (I–V) characteristics in dark and light, spectral photoresponse and cells power output. Photoelectrodes are found to be n-type semiconductors. From the power output curves, the light-to-electricity conversion efficiency of dye-sensitized ZnS–CdS electrode (8 h sensitization)-based solar cells, short-circuit current density (Jsc) and open-circuit voltage (Voc) is found to be 0.29, 0.51 mA/cm2 and 0.34 V respectively. The PXRD results show that the fabricated mixed ZnS–CdS thin films are made up of nanocrystals of size ~ 9.12 nm. Surface morphology of the films is studied, and SEM micrograms establish the polycrystalline nature of mixed ZnS–CdS thin films. The EDAX (energy diffraction analysis of X-ray) results show the presence of Zn, Cd and S in the thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. B B Panda, P K Mahapatra and M K Ghosh J. Electron. Mater. 47 3657 (2018)

    Article  ADS  Google Scholar 

  2. P Zhang, B Y Guan, L Yu and X W David Lou Chem 4 162 (2018)

  3. H K Jun, M A Careem and A K Arof Renew. Sustain. Energy Rev. 22 148 (2013)

    Article  Google Scholar 

  4. H C Hassan, Z H Z Abidin, F I C howdhury and A K Arof Int. J. Photoenergy https://doi.org/10.1155/2016/3685210

  5. Y Duan, N Fu, Q Liu, Y Fang, X Zhou, J Zhang and Y Lin J. Phys. Chem. C 116 8888 (2012)

    Article  Google Scholar 

  6. G Calogero, G Di Marco, S Caramori, S Cazzanti, R Argazzic and C A Bignozzi Energy Environ. Sci. 2 1162 (2009)

    Article  Google Scholar 

  7. C S Ferekides, U Balasubramanian, R Mamazza, V Viswanathan, H Zhao and D L Morel Sol. Energy 77 823 (2004)

    Article  ADS  Google Scholar 

  8. D J Desale, S Shaikh, A Ghosh, R Birajadar, F Siddiqui, A Ghule and R B Sharma Compos. B Eng. 43 1095 (2012)

    Article  Google Scholar 

  9. M K Nazeeruddin, F De Angelis, S Fantacci, A Selloni, G Viscardi, P Liska, S Ito, B Takeru and M Gratzel J. Am. Chem. Soc. 127 16835 (2005)

    Article  Google Scholar 

  10. R A Jensen, H V Ryswyk, C X She, J M Szarko, L X Chen and J T Hupp Langmuir 26 1401 (2010)

    Article  Google Scholar 

  11. H J Snaith and C Ducati Nano Lett. 10 1259 (2010)

    Article  ADS  Google Scholar 

  12. K Hara, T Horiguchi, T Kinoshita, K Sayama, H Sugihara and H Arakawa Sol. Energy Mater. Sol. Cells 64 115 (2000)

    Article  Google Scholar 

  13. S M Yang, H Z Kou, H J Wang, K Cheng and J C Wang J. Phys. Chem. C 114 815 (2010)

    Article  Google Scholar 

  14. X L Yu, J G Song, Y S Fu, Y Xie, X Song, J Sun and X W Du J. Phys. Chem. C 114 2380 (2010)

    Article  Google Scholar 

  15. I M Sero, S Gimenez, F F Santiago, R Gomez, Q Shen, T Toyoda and J Bisquert Acc. Chem. Res. 42 1848 (2009)

    Article  Google Scholar 

  16. Q F Zhang, T R Chou, B Russo, S A Jenekhe and G Z Cao Angew. Chem. Int. Ed. 47 2402 (2008)

  17. Q F Zhang, C S Dandeneau, K Park, D W Liu, X Y Zhou, Y H Jeong and G Z Cao J. Nanophotonics 4 041540 (2010)

    Article  ADS  Google Scholar 

  18. P P Hankare, P.A. Chate and D.J. Sathe J. Alloys Compd. 487 367 (2009)

  19. A B Bhalerao, C D Lokhande and B G Wagh IEEE Trans. Nanotechnol. 12 (2013)

  20. S Sfaelou, L Sygellou, V Dracopoulos, A Travlos and P Lianos J. Phys. Chem. C 118 22873 (2014)

    Article  Google Scholar 

  21. E Rabinovich and G Hodes J. Phys. Chem. C 117 1611 (2013)

    Article  Google Scholar 

  22. S B Patil and A K Singh Appl. Surf. Sci. 256 2884 (2010)

    Article  ADS  Google Scholar 

  23. S A Pawar, D S Patil, A C Lokhande, M G Gang, J C Shin, P S Patil and J H Kim Opt. Mater. 58 46 (2016)

    Article  ADS  Google Scholar 

  24. M A Rafea, A A M Farag, N Roushdy J. Alloys Compd. 485 660 (2009)

    Article  Google Scholar 

  25. A Jana, C Bhattacharya and J Datta Electrochim. Acta 55 6553 (2010)

    Article  Google Scholar 

  26. R Syafinar, N Gomesh, M Irwanto, M Fareq and Y M Irwan Energy Procedia 79 896 (2015)

    Article  Google Scholar 

  27. L L Li and E W G Diau Chem. Soc. Rev. 42 291 (2013)

    Article  Google Scholar 

  28. X YaoMing, W JiHuai, C CunXi, C Yuan, Y GenTian, L JianMing, H MiaoLiang, F LeQing and L Zhang Chin. Sci. Bull. 57, 2329 (2012)

    Article  Google Scholar 

  29. P K Mahapatra and B B Panda Chalcogenide Lett. 7 477 (2010)

    Google Scholar 

  30. N Sekar and V Y Gehlot Resonance 819 (2010)

  31. G Calogero, J H Yum, A Sinopoli, G D Marco, M Gratzel and M K Nazeeruddin Sol. Energy 86 1563 (2012)

    Article  ADS  Google Scholar 

  32. G Richhariya, A Kumar, P Tekasakul and B Gupta Renew. Sustain. Energy Rev. 69, 705 (2017)

    Article  Google Scholar 

  33. M Gratzel J. Phys. Chem. 97 6272 (1993)

  34. L Goncalves, V Bermudez, H Ribeiroa and A Mendes Energy Environ. Sci. 1 655 (2008)

    Article  Google Scholar 

  35. V Jovanovski, V González-Pedro, S Giménez, E Azaceta, G Cabañero, H Grande, R Tena-Zaera, I Mora-Seró and J Bisquer J. Am. Chem. Soc. 133, 20156 (2011)

    Article  Google Scholar 

  36. H Song, H Rao and X Zhong J. Mater. Chem. A 6, 4895 (2018)

    Article  Google Scholar 

  37. M Gratzel Acc. Chem. Res. 42 1788 (2009)

  38. V Chakrapani, D Baker and P V Kamat J. Am. Chem. Soc. 133 9607 (2011)

    Article  Google Scholar 

  39. S Mahajan, E Stathatos, N Huse, R Birajdar, A Kalarakis and R Sharma Mater. Lett. 210 92 (2018)

    Article  Google Scholar 

  40. A S Dive, N P Huse, K P Gattu, R B Birajdar, D R Upadhyay and R Sharma J. Mater. Sci. Mater. Electron. https://doi.org/10.1007/s10854-017-7393-5

  41. A Bahramian Ind. Eng. Chem. Res. 52 14837 (2013)

  42. H P Wu, C M Lan, J Y Hu, W K Huang, J W Shiu, Z J Lan, C M Tsai, C H Su and E W G. Diau J. Phys. Chem. Lett. 4 1570 (2013)

    Article  Google Scholar 

  43. Z Q Bao, H Xie, Q Zhu, J Qian, P Ruana and X Zhou CrystEngComm 15 8972 (2013)

    Article  Google Scholar 

  44. N Mir, K Lee, I Paramasivam and P Schmuki Chem. Eur. J. 18 11862 (2012)

    Article  Google Scholar 

  45. H Y Chen, T L Zhang, J Fan, D B Kuang and C Y Su ACS Appl. Mater. Interfaces 5 9205 (2013)

    Article  Google Scholar 

  46. E N Kumar, R Jose, P S Archana, C Vijila, M M Yusoff and S Ramakrishna Energy Environ. Sci. 5 5401 (2012)

    Article  Google Scholar 

  47. J Huo, Y Hu, H Jiang, W Huang, Y Li, W Shao and C Li Ind. Eng. Chem. Res. 52 11029 (2013)

    Article  Google Scholar 

  48. A E Alam, W M Cranton, M Dharmadasa J. Mater. Sci. Mater. Electron. 30 4580 (2019)

    Google Scholar 

  49. H J Son, C Prasittichai, J E Mondloch, L Luo, J Wu, D W Kim, O K Farha and J T Hupp J. Am. Chem. Soc. 135 11529 (2013)

    Article  Google Scholar 

  50. B B Panda, B Sharma and R K Rana Mater. Sci. Pol. 34 446 (2016).

    Article  ADS  Google Scholar 

  51. C Duan, W Luo, T Jiu, J Li, Y Wang and F Lu J. Colloid Interface Sci. https://doi.org/10.1016/j.jcis.2017.09.108

  52. M A Mahdi, J J Hassan, Z Hassan, S S Ng J. Alloys Compd. 541 227 (2012)

  53. J K Dongre, M Chaturvedi, Y Patil, S Sharma, and U K Jain AIP Conf. Proc. 1670, 030007 (2015). https://doi.org/10.1063/1.4926691

    Article  Google Scholar 

  54. J Song, S S Li, S Yoon, W K Kim, J Kim, J Chen, V Craciun, T J Anderson, O D Crisalle and F Ren 0-7803-8707-4/05/$20.0002005 IEEE

  55. T Suyitno, T J Saputra, A Supriyanto, Z Arifin Spectrochim. Acta A Mol. Biomol. Spectrosc. 148 99 (2015)

    Article  ADS  Google Scholar 

  56. P K Mahapatra and B B Panda Int. J. Thin Films Sci. Technol. 4 45 (2015)

    Google Scholar 

  57. R M Mane, S S Mali, V B Ghanwat, V V Kondalkar, K V Khot, S R Mane, D B Shinde, P S Patil and P N Bhosale Mater. Today Proc. 2 1458 (2015)

  58. A A Yadav and E U Masumdar J. Alloys Compd. 509 5394 (2011)

    Article  Google Scholar 

  59. N P Husea, A S Divea, K P Gattub and R Sharma Mater. Sci. Semicond. Process. 67 62 (2017)

    Article  Google Scholar 

  60. K Rajeshwar, L Thomson, P Singh, R C Kainthala and K L Chopra J. Electrochem. Soc. 128 1744 (1981)

    Article  ADS  Google Scholar 

  61. K Alfaramawi Dig. J. Nanomater. Biostruct. 5 933 (2010)

  62. A D A Buba, E O Ajala and D O Samson Asian J Sci Technol 6 1146 (2015)

    Google Scholar 

  63. S M Pawar, A V Moholkar, K Y Rajpure, C H Bhosale Sol. Energy Mater. Sol. Cells 92 45 (2008)

    Article  Google Scholar 

  64. S Aydogan and O Gullu Microelectron. Eng. 87 187(2010)

    Article  Google Scholar 

  65. B Cerda, R Sivakumar, M Paulraj J. Phys. Conf. Ser. 720 012030 (2016) https://doi.org/10.1088/1742-6596/720/1/012030

    Article  Google Scholar 

  66. H Chang, H M Wu, T L Chen, K D Huang, C S Jwo and Y J Lo J. Alloys Compd. 495 606 (2010)

  67. H Chang, M J Kao, T L Chen, C H Chen, K C Cho and X R Lai Int. J. Photoenergy 2013; Article ID 159502

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. B. Panda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panda, B.B., Mahapatra, P.K. & Ghosh, M.K. Electrodeposited mixed ZnS–CdS photoelectrode for natural dye-sensitized solar cells (NDSSC). Indian J Phys 95, 2349–2357 (2021). https://doi.org/10.1007/s12648-020-01902-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-020-01902-4

Keywords

Navigation