Skip to main content
Log in

Quasinormal modes and strong cosmic censorship in the regularised 4D Einstein–Gauss–Bonnet gravity

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The fate of strong cosmic censorship is ultimately linked to the extendibility of perturbation across the Cauchy Horizon and known to be violated in the near extremal region of a charged de Sitter black hole. Similar violations can also be realized in higher curvature theories, with the strength of violation becoming stronger as compared to general relativity. In this work, we extend this analysis further to study the validity of strong cosmic censorship conjecture in the context of the regularised four-dimensional Einstein Gauss–Bonnet theory with respect to both scalar and electromagnetic perturbation. We also study the late time tails of scalar fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wald, R.M.: General Relativity. Chicago University Press, Chicago (1984)

    Book  Google Scholar 

  2. Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Space-Time. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (1973)

    Book  Google Scholar 

  3. Poisson, E., Israel, W.: Internal structure of black holes. Phys. Rev. D 41, 1796–1809 (1990). https://doi.org/10.1103/PhysRevD.41.1796

    Article  ADS  MathSciNet  Google Scholar 

  4. Ori, A.: Inner structure of a charged black hole: an exact mass-inflation solution. Phys. Rev. Lett. 67, 789–792 (1991). https://doi.org/10.1103/PhysRevLett.67.789

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Poisson, E.: A Relativist’s Toolkit: The Mathematics of Black-Hole Mechanics. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  6. Bhattacharjee, S., Sarkar, S., Virmani, A.: Internal structure of charged AdS black holes. Phys. Rev. D 93(12), 124029 (2016). arXiv:1604.03730 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  7. Christodoulou, D.: The formation of black holes in general relativity. In: On Recent Developments in Theoretical and Experimental General Relativity, Astrophysics and Relativistic Field Theories. Proceedings, 12th Marcel Grossmann Meeting on General Relativity, Paris, France, 12–18 July 2009, vol. 1–3, pp. 24–34 (2008). arXiv:0805.3880 [gr-qc]

  8. Cardoso, V., Costa, J.L., Destounis, K., Hintz, P., Jansen, A.: Quasinormal modes and strong cosmic censorship. Phys. Rev. Lett. 120, 031103 (2018). https://doi.org/10.1103/PhysRevLett.120.031103

    Article  ADS  Google Scholar 

  9. Mo, Y., Tian, Y., Wang, B., Zhang, H., Zhong, Z.: Strong cosmic censorship for the massless charged scalar field in the Reissner–Nordstrom–de Sitter spacetime. Phys. Rev. D 98(12), 124025 (2018). arXiv:1808.03635 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  10. Dias, O.J.C., Reall, H.S., Santos, J.E.: Strong cosmic censorship for charged de Sitter black holes with a charged scalar field. Class. Quantum Gravity 36(4), 045005 (2019). arXiv:1808.04832 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  11. Ge, B., Jiang, J., Wang, B., Zhang, H., Zhong, Z.: Strong cosmic censorship for the massless Dirac field in the Reissner–Nordstrom–de Sitter spacetime. JHEP 01, 123 (2019). arXiv:1810.12128 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  12. Rahman, M., Chakraborty, S., SenGupta, S., Sen, A.A.: Fate of strong cosmic censorship conjecture in presence of higher spacetime dimensions. JHEP 03, 178 (2019). arXiv:1811.08538 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  13. Destounis, K.: Charged fermions and strong cosmic censorship. Phys. Lett. B 795, 211–219 (2019). arXiv:1811.10629 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  14. Gwak, B.: Strong cosmic censorship under quasinormal modes of non-minimally coupled massive scalar field. Eur. Phys. J. C 79(9), 767 (2019). arXiv:1812.04923 [gr-qc]

    Article  ADS  Google Scholar 

  15. Gim, Y., Gwak, B.: Charged particle and strong cosmic censorship in Reissner–Nordström–de Sitter black holes. arXiv:1901.11214 [gr-qc]

  16. Liu, H., Tang, Z., Destounis, K., Wang, B., Papantonopoulos, E., Zhang, H.: Strong cosmic censorship in higher-dimensional Reissner–Nordström–de Sitter spacetime. JHEP 03, 187 (2019). arXiv:1902.01865 [gr-qc]

    Article  ADS  Google Scholar 

  17. Rahman, M.: On the validity of strong cosmic censorship conjecture in presence of Dirac fields. arXiv:1905.06675 [gr-qc]

  18. Guo, H., Liu, H., Kuang, X.-M., Wang, B.: Strong cosmic censorship in charged de Sitter spacetime with scalar field non-minimally coupled to curvature. arXiv:1905.09461 [gr-qc]

  19. Dias, O.J.C., Reall, H.S., Santos, J.E.: The BTZ black hole violates strong cosmic censorship. arXiv:1906.08265 [hep-th]

  20. Liu, X., Van Vooren, S., Zhang, H., Zhong, Z.: Strong cosmic censorship for the Dirac field in the higher dimensional Reissner–Nordstrom–de Sitter black hole. JHEP 10, 186 (2019). arXiv:1909.07904 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  21. Cardoso, V., Costa, J.L., Destounis, K., Hintz, P., Jansen, A.: Strong cosmic censorship in charged black-hole spacetimes: still subtle. Phys. Rev. D 98(10), 104007 (2018). arXiv:1808.03631 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  22. Dias, O.J.C., Reall, H.S., Santos, J.E.: Strong cosmic censorship: taking the rough with the smooth. JHEP 10, 001 (2018). arXiv:1808.02895 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  23. Gan, Q., Guo, G., Wang, P., Wu, H.: Strong cosmic censorship for a scalar field in a Born-Infeld–de Sitter black hole. arXiv:1907.04466 [hep-th]

  24. Destounis, K., Fontana, R.D.B., Mena, F.C., Papantonopoulos, E.: Strong cosmic censorship in Horndeski theory. arXiv:1908.09842 [gr-qc]

  25. Rahman, M., Mitra, S., Chakraborty, S.: Strong cosmic censorship conjecture with NUT charge and conformal coupling. arXiv:2001.00599 [gr-qc]

  26. Dias, O.J., Eperon, F.C., Reall, H.S., Santos, J.E.: Strong cosmic censorship in de Sitter space. Phys. Rev. D 97(10), 104060 (2018). arXiv:1801.09694 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  27. Mishra, A.K., Chakraborty, S.: Strong cosmic censorship in higher curvature gravity. Phys. Rev. D 101(6), 064041 (2020). arXiv:1911.09855 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  28. Gan, Q., Wang, P., Wu, H., Yang, H.: Strong cosmic censorship for a scalar field in an Einstein–Maxwell–Gauss–Bonnet–de Sitter black hole. arXiv:1911.10996 [gr-qc]

  29. Lovelock, D.: The Einstein tensor and its generalizations. J. Math. Phys. 12, 498–501 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  30. Zwiebach, B.: Curvature squared terms and string theories. Phys. Lett. B 156(5), 315–317 (1985)

    Article  ADS  Google Scholar 

  31. Boulware, D.G., Deser, S.: String-generated gravity models. Phys. Rev. Lett. 55, 2656–2660 (1985). https://doi.org/10.1103/PhysRevLett.55.2656

    Article  ADS  Google Scholar 

  32. Zumino, B.: Gravity theories in more than four dimensions. Phys. Rep. 137(1), 109–114 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  33. Padmanabhan, T., Kothawala, D.: Lanczos-lovelock models of gravity. Phys. Rep. 531(3), 115–171 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  34. Chakraborty, S.: Lanczos–Lovelock gravity from a thermodynamic perspective. JHEP 08, 029 (2015). arXiv:1505.07272 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  35. Glavan, D., Lin, C.: Einstein–Gauss–Bonnet gravity in 4-dimensional space-time. Phys. Rev. Lett. 124(8), 081301 (2020). arXiv:1905.03601 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  36. Gurses, M., Sisman, T.C., Tekin, B.: Is there a novel Einstein–Gauss–Bonnet theory in four dimensions? arXiv:2004.03390 [gr-qc]

  37. Shu, F.-W.: Vacua in novel 4D Einstein–Gauss–Bonnet gravity: pathology and instability? arXiv:2004.09339 [gr-qc]

  38. Ai, W.-Y.: A note on the novel 4D Einstein–Gauss–Bonnet gravity. arXiv:2004.02858 [gr-qc]

  39. Lu, H., Pang, Y.: Horndeski gravity as \(D\rightarrow 4\) limit of Gauss–Bonnet. arXiv:2003.11552 [gr-qc]

  40. Kobayashi, T.: Effective scalar-tensor description of regularized Lovelock gravity in four dimensions. arXiv:2003.12771 [gr-qc]

  41. Fernandes, P.G., Carrilho, P., Clifton, T., Mulryne, D.J.: Derivation of regularized field equations for the Einstein–Gauss–Bonnet theory in four dimensions. arXiv:2004.08362 [gr-qc]

  42. Hennigar, R.A., Kubiznak, D., Mann, R.B., Pollack, C.: On taking the \(D\rightarrow 4\) limit of Gauss–Bonnet gravity: theory and solutions. arXiv:2004.09472 [gr-qc]

  43. Lin, Z.-C., Yang, K., Wei, S.-W., Wang, Y.-Q., Liu, Y.-X.: Is the four-dimensional novel EGB theory equivalent to its regularized counterpart in a cylindrically symmetric spacetime? arXiv:2006.07913 [gr-qc]

  44. Konoplya, R.A., Zinhailo, A.F.: Quasinormal modes, stability and shadows of a black hole in the novel 4D Einstein–Gauss–Bonnet gravity. arXiv:2003.01188 [gr-qc]

  45. Fernandes, P.G.S.: Charged black holes in AdS spaces in \(4D\) Einstein Gauss–Bonnet gravity. arXiv:2003.05491 [gr-qc]

  46. Guo, M., Li, P.-C.: The innermost stable circular orbit and shadow in the novel \(4D\) Einstein–Gauss–Bonnet gravity. arXiv:2003.02523 [gr-qc]

  47. Konoplya, R.A., Zhidenko, A.: Black holes in the four-dimensional Einstein–Lovelock gravity. arXiv:2003.07788 [gr-qc]

  48. Kumar, R., Ghosh, S.G.: Rotating black holes in the novel \(4D\) Einstein–Gauss–Bonnet gravity. arXiv:2003.08927 [gr-qc]

  49. Ghosh, S.G., Maharaj, S.D.: Radiating black holes in the novel 4D Einstein–Gauss–Bonnet gravity. arXiv:2003.09841 [gr-qc]

  50. Ghosh, S.G., Kumar, R.: Generating black holes in the novel \(4D\) Einstein–Gauss–Bonnet gravity. arXiv:2003.12291 [gr-qc]

  51. Konoplya, R.A., Zhidenko, A.: (In)stability of black holes in the 4D Einstein–Gauss–Bonnet and Einstein–Lovelock gravities. arXiv:2003.12492 [gr-qc]

  52. Churilova, M.S.: Quasinormal modes of the Dirac field in the novel 4D Einstein–Gauss–Bonnet gravity. arXiv:2004.00513 [gr-qc]

  53. Zhang, C.-Y., Li, P.-C., Guo, M.: Greybody factor and power spectra of the Hawking radiation in the novel \(4D\) Einstein–Gauss–Bonnet de-Sitter gravity. arXiv:2003.13068 [hep-th]

  54. Wei, S.-W., Liu, Y.-X.: Extended thermodynamics and microstructures of four-dimensional charged Gauss–Bonnet black hole in AdS space. arXiv:2003.14275 [gr-qc]

  55. Hegde, K., Naveena Kumara, A., Rizwan, C.L.A., Ajith, K.M., Ali, M.S.: Thermodynamics, phase transition and Joule Thomson expansion of novel 4-D Gauss Bonnet AdS black hole. arXiv:2003.08778 [gr-qc]

  56. Zhang, Y.-P., Wei, S.-W., Liu, Y.-X.: Spinning test particle in four-dimensional Einstein–Gauss–Bonnet black hole. arXiv:2003.10960 [gr-qc]

  57. Wei, S.-W., Liu, Y.-X.: Testing the nature of Gauss–Bonnet gravity by four-dimensional rotating black hole shadow. arXiv:2003.07769 [gr-qc]

  58. Hosseini Mansoori, S.A.: Thermodynamic geometry of novel 4-D Gauss Bonnet AdS black hole. arXiv:2003.13382 [gr-qc]

  59. Cai, R.-G., Cao, L.-M., Ohta, N.: Black holes in gravity with conformal anomaly and logarithmic term in black hole entropy. JHEP 04, 082 (2010). arXiv:0911.4379 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  60. Cai, R.-G.: Thermodynamics of conformal anomaly corrected black holes in AdS space. Phys. Lett. B 733, 183–189 (2014). arXiv:1405.1246 [hep-th]

    Article  ADS  Google Scholar 

  61. Casalino, A., Colleaux, A., Rinaldi, M., Vicentini, S.: Regularized Lovelock gravity. arXiv:2003.07068 [gr-qc]

  62. Berti, E., Cardoso, V., Starinets, A.O.: Quasinormal modes of black holes and black branes. Class. Quantum Gravity 26, 163001 (2009). arXiv:0905.2975 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  63. Konoplya, R.A., Zhidenko, A.: Quasinormal modes of black holes: from astrophysics to string theory. Rev. Mod. Phys. 83, 793–836 (2011). arXiv:1102.4014 [gr-qc]

    Article  ADS  Google Scholar 

  64. Cardoso, V., Miranda, A.S., Berti, E., Witek, H., Zanchin, V.T.: Geodesic stability, Lyapunov exponents, and quasinormal modes. Phys. Rev. D 79, 064016 (2009). https://doi.org/10.1103/PhysRevD.79.064016

    Article  ADS  MathSciNet  Google Scholar 

  65. Hod, S.: Black-hole quasinormal resonances: wave analysis versus a geometric-optics approximation. Phys. Rev. D 80, 064004 (2009). https://doi.org/10.1103/PhysRevD.80.064004

    Article  ADS  Google Scholar 

  66. Mashhoon, B.: Stability of charged rotating black holes in the eikonal approximation. Phys. Rev. D 31, 290–293 (1985). https://doi.org/10.1103/PhysRevD.31.290

    Article  ADS  MathSciNet  Google Scholar 

  67. Cornish, N.J., Levin, J.J.: Lyapunov timescales and black hole binaries. Class. Quantum Gravity 20, 1649–1660 (2003). arXiv:gr-qc/0304056 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  68. Bombelli, L., Calzetta, E.: Chaos around a black hole. Class. Quantum Gravity 9(12), 2573–2599 (1992). https://doi.org/10.1088/0264-9381/9/12/004

    Article  ADS  MathSciNet  Google Scholar 

  69. Ferrari, V., Mashhoon, B.: Oscillations of a black hole. Phys. Rev. Lett. 52, 1361–1364 (1984). https://doi.org/10.1103/PhysRevLett.52.1361

    Article  ADS  MathSciNet  Google Scholar 

  70. Konoplya, R.A., Stuchlík, Z.: Are eikonal quasinormal modes linked to the unstable circular null geodesics? Phys. Lett. B 771, 597–602 (2017). arXiv:1705.05928 [gr-qc]

    Article  ADS  Google Scholar 

  71. Konoplya, R.A., Zinhailo, A.F., Stuchlík, Z.: Quasinormal modes, scattering, and Hawking radiation in the vicinity of an Einstein-dilaton-Gauss–Bonnet black hole. Phys. Rev. D 99(12), 124042 (2019). arXiv:1903.03483 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  72. Du, D.-P., Wang, B., Su, R.-K.: Quasinormal modes in pure de sitter spacetimes. Phys. Rev. D 70, 064024 (2004). https://doi.org/10.1103/PhysRevD.70.064024

    Article  ADS  MathSciNet  Google Scholar 

  73. Lopez-Ortega, A.: On the quasinormal modes of the de Sitter spacetime. Gen. Relativ. Gravit. 44, 2387–2400 (2012). arXiv:1207.6791 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  74. Abdalla, E., Castello-Branco, K.H.C., Lima-Santos, A.: Support of ds/cft correspondence from space-time perturbations. Phys. Rev. D 66, 104018 (2002). https://doi.org/10.1103/PhysRevD.66.104018

    Article  ADS  MathSciNet  Google Scholar 

  75. Abdalla, E., Konoplya, R.A., Molina, C.: Scalar field evolution in Gauss–Bonnet black holes. Phys. Rev. D 72, 084006 (2005). arXiv:hep-th/0507100 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  76. Natario, J., Schiappa, R.: On the classification of asymptotic quasinormal frequencies for d-dimensional black holes and quantum gravity. Adv. Theor. Math. Phys. 8(6), 1001–1131 (2004). arXiv:hep-th/0411267 [hep-th]

    Article  MathSciNet  Google Scholar 

  77. Konoplya, R.: Quasinormal modes of the charged black hole in Gauss–Bonnet gravity. Phys. Rev. D 71, 024038 (2005). arXiv:hep-th/0410057 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  78. Konoplya, R.A., Zhidenko, A.: (In)stability of D-dimensional black holes in Gauss–Bonnet theory. Phys. Rev. D 77, 104004 (2008). arXiv:0802.0267 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  79. Cuyubamba, M.A., Konoplya, R.A., Zhidenko, A.: Quasinormal modes and a new instability of Einstein–Gauss–Bonnet black holes in the de Sitter world. Phys. Rev. D 93(10), 104053 (2016). arXiv:1604.03604 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  80. Konoplya, R.A., Zhidenko, A.: Eikonal instability of Gauss–Bonnet–(anti-)–de Sitter black holes. Phys. Rev. D 95(10), 104005 (2017). arXiv:1701.01652 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  81. Konoplya, R.A., Zhidenko, A.: The portrait of eikonal instability in Lovelock theories. JCAP 1705(05), 050 (2017). arXiv:1705.01656 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  82. Nojiri, S., Odintsov, S.D.: Anti-de Sitter black hole thermodynamics in higher derivative gravity and new confining deconfining phases in dual CFT. Phys. Lett. B521, 87–95 (2001). arXiv:hep-th/0109122 [hep-th] [Erratum: Phys. Lett. B542, 301(2002)]

  83. Nojiri, S., Odintsov, S.D., Ogushi, S.: Cosmological and black hole brane world universes in higher derivative gravity. Phys. Rev. D 65, 023521 (2002). arXiv:hep-th/0108172 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  84. Jansen, A.: Overdamped modes in Schwarzschild–de Sitter and a Mathematica package for the numerical computation of quasinormal modes. Eur. Phys. J. Plus 132(12), 546 (2017). arXiv:1709.09178 [gr-qc]

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank Sudipta Sarkar, Sumanta Chakraborty and Rajes Ghosh for many helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akash K. Mishra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, A.K. Quasinormal modes and strong cosmic censorship in the regularised 4D Einstein–Gauss–Bonnet gravity. Gen Relativ Gravit 52, 106 (2020). https://doi.org/10.1007/s10714-020-02763-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-020-02763-2

Keywords

Navigation