Skip to main content
Log in

Kinetic modeling of multiphase flow based on simplified Enskog equation

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

A new kinetic model for multiphase flow was presented under the framework of the discrete Boltzmann method (DBM). Significantly different from the previous DBM, a bottom-up approach was adopted in this model. The effects of molecular size and repulsion potential were described by the Enskog collision model; the attraction potential was obtained through the mean-field approximation method. The molecular interactions, which result in the non-ideal equation of state and surface tension, were directly introduced as an external force term. Several typical benchmark problems, including Couette flow, two-phase coexistence curve, the Laplace law, phase separation, and the collision of two droplets, were simulated to verify the model. Especially, for two types of droplet collisions, the strengths of two non-equilibrium effects, \(\bar{D}^{\ast}_{2}\) and \(\bar{D}^{\ast}_{3}\), defined through the second and third order non-conserved kinetic moments of (ffeq), are comparatively investigated, where f (feq) is the (equilibrium) distribution function. It is interesting to find that during the collision process, \(\bar{D}^{\ast}_{2}\) is always significantly larger than \(\bar{D}^{\ast}_{3},\bar{D}^{\ast}_{2}\) can be used to identify the different stages of the collision process and to distinguish different types of collisions. The modeling method can be directly extended to a higher-order model for the case where the non-equilibrium effect is strong, and the linear constitutive law of viscous stress is no longer valid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Chen, Q. Xie, A. Sari, P. V. Bardy, and A. Saeedi, Oil/water/rock wettability: Influencing factors and implications for low salinity water flooding in carbonate reservoirs, Fuel 215, 171 (2018)

    Article  Google Scholar 

  2. Y. Chen and Z. Deng, Hydrodynamics of a droplet passing through a microfluidic T-junction, J. Fluid Mech. 819, 401 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. J. Tice, H. Song, A. Lyon, and R. Ismagilov, Formation of droplets and mixing in multiphase microfluidics at low values of the reynolds and the capillary numbers, Langmuir 19(22), 9127 (2003)

    Article  Google Scholar 

  4. A. Günther and K. Jensen, Multiphase microfluidics: From flow characteristics to chemical and materials synthesis, Lab Chip 6(12), 1487 (2006)

    Article  Google Scholar 

  5. E. Christopher, Brennen, Fundamentals of Multiphase Flow, Cambridge: Cambridge University Press, 2005

    Google Scholar 

  6. R. Saurel and C. Pantano, Diffuse-interface capturing methods for compressible two-phase flows, Annu. Rev. Fluid Mech. 50(1), 105 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. A. Frezzotti, P. Barbante, and L. Gibelli, Direct simulation Monte Carlo applications to liquid-vapor flows, Phys. Fluids 31(6), 062103 (2019)

    Article  ADS  Google Scholar 

  8. M. Wörner, Numerical modeling of multiphase flows in microfluidics and micro process engineering: A review of methods and applications, Microfluid. Nanofluidics 12(6), 841 (2012)

    Article  Google Scholar 

  9. Y. Zhang, A. Xu, G. Zhang, Z. Chen, and P. Wang, Discrete Boltzmann method for non-equilibrium flows: Based on Shakhov model, Comput. Phys. Commun. 238, 50 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  10. M. Moseler and U. Landman, Formation, stability, and breakup of nanojets, Science 289(5482), 1165 (2000)

    Article  ADS  Google Scholar 

  11. S. Zhan, Y. Su, Z. Jin, M. Zhang, W. Wang, Y. Hao, and L. Li, Study of liquid-liquid two-phase flow in hydrophilic nanochannels by molecular simulations and theoretical modeling, Chem. Eng. J. 395, 125053 (2020)

    Article  Google Scholar 

  12. S. Wolfram, Cellular automaton fluids 1: Basic theory, J. Stat. Phys. 45(3–4), 471 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. S. Chen and G. Doolen, Lattice Boltzmann method for fluid flows, Annu. Rev. Fluid Mech. 30(1), 329 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. S. Succi, The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond, Oxford: Oxford University Press, 2001

    MATH  Google Scholar 

  15. X. He and G. D. Doolen, Thermodynamic foundations of kinetic theory and lattice Boltzmann models for multiphase flows, J. Stat. Phys. 107(1–2), 309 (2002)

    Article  MATH  Google Scholar 

  16. R. Qin, Mesoscopic interparticle potentials in the lattice Boltzmann equation for multiphase fluids, Phys. Rev. E 73(6), 066703 (2006)

    Article  ADS  Google Scholar 

  17. Q. Li, K. Luo, Q. Kang, Y. He, Q. Chen, and Q. Liu, Lattice Boltzmann methods for multiphase flow and phase-change heat transfer, Pror. Energy Combust. Sci. 52, 62 (2016)

    Article  Google Scholar 

  18. R. Qin, Thermodynamic properties of phase separation in shear flow, Comput. Fluids 117, 11 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. K. Timm, H. Kusumaatmaja, A. Kuzmin, O. Shardt, G. Silva, and E. Viggen, The Lattice Boltzmann Method — Principles and Practice, Springer, 2017

  20. D. Grunau, S. Chen, and K. Eggert, A lattice Boltzmann model for multiphase fluid flows, Phys. Fluids 5(10), 2557 (1993)

    Article  ADS  MATH  Google Scholar 

  21. X. Shan and H. Chen, Lattice Boltzmann model for simulating flows with multiple phases and components, Phys. Rev. E 47(3), 1815 (1993)

    Article  ADS  Google Scholar 

  22. M. R. Swift, W. R. Osborn, and J. M. Yeomans, Lattice Boltzmann simulation of non-ideal fluids, Phys. Rev. Lett. 75(5), 830 (1995)

    Article  ADS  Google Scholar 

  23. A. Xu, G. Gonnella, and A. Lamura, Phase-separating binary fluids under oscillatory shear, Phys. Rev. E 67(5), 056105 (2003)

    Article  ADS  Google Scholar 

  24. X. He, S. Chen, and R. Zhang, A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh-Taylor instability, J. Comput. Phys. 152(2), 642 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. H. Liang, Q. Li, B. Shi, and Z. Chai, Lattice Boltzmann simulation of three-dimensional Rayleigh-Taylor instability, Phys. Rev. E 93(3), 033113 (2016)

    Article  ADS  Google Scholar 

  26. H. Wang, X. Yuan, H. Liang, Z. Chai, and B. Shi, A brief review of the phase-field-based lattice Boltzmann method for multiphase flows, Capillarity 2(3), 33 (2019)

    Article  Google Scholar 

  27. D. Sun, A discrete kinetic scheme to model anisotropic liquid-solid phase transitions, Appl. Math. Lett. 103, 106222 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  28. M. Watari and M. Tsutahara, Two-dimensional thermal model of the finite-di ference lattice Boltzmann method with high spatial isotropy, Phys. Rev. E 67(3), 036306 (2003)

    Article  ADS  Google Scholar 

  29. G. Gonnella, A. Lamura, and V. Sofonea, Lattice Boltzmann simulation of thermal non-ideal fluids, Phys. Rev. E 76(3), 036703 (2007)

    Article  ADS  Google Scholar 

  30. A. Onuki, Dynamic van der Waals theory of two-phase fluids in heat flow, Phys. Rev. Lett. 94(5), 054501 (2005)

    Article  ADS  Google Scholar 

  31. Y. Gan, A. Xu, G. Zhang, and Y. Li, FFT-LB modeling of thermal liquid-vapor system, Commum. Theor. Phys. 57(4), 681 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Y. Gan, A. Xu, G. Zhang, Y. Li, and H. Li, Phase separation in thermal systems: A lattice Boltzmann study and morphological characterization, Phys. Rev. E 84(4), 046715 (2011)

    Article  ADS  Google Scholar 

  33. A. Xu, G. Zhang, Y. Gan, F. Chen, and X. Yu, Lattice Boltzmann modeling and simulation of compressible flows, Front. Phys. 7(5), 582 (2012)

    Article  ADS  Google Scholar 

  34. A. Xu, G. Zhang, and Y. Ying, Progess of discrete Boltzmann modeling and simulation of combustion system, Acta Physica Sinica 64, 184701 (2015)

    Article  Google Scholar 

  35. A. Xu, G. Zhang, and Y. Gan, Progress in studies on discrete Boltzmann modeling of phase separation process, Mech. Eng. 38, 361 (2016)

    Google Scholar 

  36. A. Xu, G. Zhang, and Y. Zhang, Discrete Boltzmann modeling of compressible flows, in: G. Z. Kyzas and A. C. Mitropoulos (Eds.), Kinetic Theory, InTech, Rijeka, 2018, Ch. 02

    Google Scholar 

  37. C. Lin and K. Luo, Discrete Boltzmann modeling of unsteady reactive flows with nonequilibrium effects, Phys. Rev. E 99(1), 012142 (2019)

    Article  ADS  Google Scholar 

  38. Y. Gan, A. Xu, G. Zhang, Y. Zhang, and S. Succi, Discrete Boltzmann trans-scale modeling of high-speed compressible flows, Phys. Rev. E 97(5), 053312 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  39. Y. Gan, A. Xu, G. Zhang, and S. Succi, Discrete Boltzmann modeling of multiphase flows: hydrodynamic and thermodynamic non-equilibrium effects, Soft Matter 11(26), 5336 (2015)

    Article  ADS  Google Scholar 

  40. Y. Zhang, A. Xu, G. Zhang, Y. Gan, Z. Chen, and S. Succi, Entropy production in thermal phase separation: A kinetic-theory approach, Soft Matter 15(10), 2245 (2019)

    Article  ADS  Google Scholar 

  41. B. Yan, A. Xu, G. Zhang, Y. Ying, and H. Li, Lattice Boltzmann model for combustion and detonation, Front. Phys. 8(1), 94 (2013)

    Article  ADS  Google Scholar 

  42. A. Xu, C. Lin, G. Zhang, and Y. Li, Multiple-relaxation-time lattice Boltzmann kinetic model for combustion, Phys. Rev. E 91(4), 043306 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  43. C. Lin, A. Xu, G. Zhang, and Y. Li, Double-distribution-function discrete Boltzmann model for combustion, Combust. Flame 164, 137 (2016)

    Article  Google Scholar 

  44. Y. Zhang, A. Xu, G. Zhang, C. Zhu, and C. Lin, Kinetic modeling of detonation and effects of negative temperature coefficient, Combust. Flame 173, 483 (2016)

    Article  Google Scholar 

  45. C. Lin and K. Luo, MRT discrete Boltzmann method for compressible exothermic reactive flows, Comput. Fluids 166, 176 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  46. C. Lin, K. Luo, L. Fei, and S. Succi, A multi-component discrete Boltzmann model for nonequilibrium reactive flows, Sci. Rep. 7(1), 14580 (2017)

    Article  ADS  Google Scholar 

  47. A. Xu, G. Zhang, Y. Zhang, P. Wang, and Y. Ying, Discrete Boltzmann model for implosion and explosion related compressible ow with spherical symmetry, Front. Phys. 13(5), 135102 (2018)

    Article  ADS  Google Scholar 

  48. H. Lai, A. Xu, G. Zhang, Y. Gan, Y. Ying, and S. Succi, Non-equilibrium thermohydrodynamic effects on the Rayleigh-Taylor instability incompressible flow, Phys. Rev. E 94(2), 023106 (2016)

    Article  ADS  Google Scholar 

  49. F. Chen, A. Xu, and G. Zhang, Viscosity, heat conductivity, and Prandtl number effects in the Rayleigh Taylor instability, Front. Phys. 11(6), 114703 (2016)

    Article  ADS  Google Scholar 

  50. H. Ye, H. Lai, D. Li, Y. Gan, C. Lin, L. Chen, and A. Xu, Knudsen number effects on two-dimensional Rayleigh-Taylor instability in compressible fluid: Based on a discrete Boltzmann method, Entropy (Basel) 22(5), 500 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  51. Y. Gan, A. Xu, G. Zhang, C. Lin, H. Lai, and Z. Liu, Nonequilibrium and morphological characterizations of Kelvin-Helmholtz instability in compressible flows, Front. Phys. 14(4), 43602 (2019)

    Article  ADS  Google Scholar 

  52. C. Lin, A. Xu, G. Zhang, K. Luo, and Y. Li, Discrete Boltzmann modeling of Rayleigh-Taylor instability in two-component compressible flows, Phys. Rev. E 96(5), 053305 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  53. H. Liu, W. Kang, Q. Zhang, Y. Zhang, H. Duan, and X. He, Molecular dynamics simulations of microscopic structure of ultra strong shock waves in dense helium, Front. Phys. 11(6), 115206 (2016)

    Article  ADS  Google Scholar 

  54. H. Liu, Y. Zhang, W. Kang, P. Zhang, H. Duan, and X. He, Molecular dynamics simulation of strong shock waves propagating in dense deuterium, taking into consideration effects of excited electrons, Phys. Rev. E 95(2), 023201 (2017)

    Article  ADS  Google Scholar 

  55. H. Liu, W. Kang, H. Duan, P. Zhang, and X. He, Recent progresses on numerical investigations of microscopic structure of strong shock waves in fluid, Sci. China Phys. Mech. Astron. 47(7), 070003 (2017)

    Article  Google Scholar 

  56. J. Meng, Y. Zhang, N. Hadjiconstantinou, G. Radtke, and X. Shan, Lattice ellipsoidal statistical BGK model for thermal non-equilibrium flows, J. Fluid Mech. 718, 347 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Y. Gan, A. Xu, G. Zhang, and S. Succi, Discrete Boltzmann modeling of multiphase flows: Hydrodynamic and thermodynamic non-equilibrium effects, Soft Matter 11(26), 5336 (2015)

    Article  ADS  Google Scholar 

  58. Q. Shen, Rarefied Gas Dynamics: Fundamentals, Simulations and Micro Flows, Springer, 2005

  59. S. Chapman, T. Cowling, and D. Burnett, The Mathematical Theory of Non-Uniform Gases: An Account of The Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases, Cambridge: Cambridge University Press, 1990

    Google Scholar 

  60. Z. Guo and C. Zheng, Theory and Applications of Lattice Boltzmann Method, Beijing: Science Press, 2008

    Google Scholar 

  61. V. Bongiorno and H. T. Davis, Modified van der Waals theory of fluid interfaces, Phys. Rev. A 12(5), 2213 (1975)

    Article  ADS  Google Scholar 

  62. H. Huang, M. Sukop, and X. Lu, Multiphase Lattice Boltzmann Methods: Theory and Application, John Wiley & Sons, Inc, 2015

Download references

Acknowledgements

Many thanks to the anonymous referees for their helpful comments and suggestions. This work was supported by the China Postdoctoral Science Foundation Grant No. 2019M662521, the National Natural Science Foundation of China under Grant No. 11772064, CAEP Foundation (Grant No. CX2019033), and the Opening Project of State Key Laboratory of Explosion Science and Technology (Beijing Institute of Technology) under Grant No. KFJJ19-01 M.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ai-Guo Xu or Zung-Hang Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, YD., Xu, AG., Qiu, JJ. et al. Kinetic modeling of multiphase flow based on simplified Enskog equation. Front. Phys. 15, 62503 (2020). https://doi.org/10.1007/s11467-020-1014-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-020-1014-0

Keywords

Navigation