Skip to main content
Log in

Evaluation of the combined application of Purpureocillium lilacinum PLSAU-1 and Glomus sp. against Meloidogyne incognita: implications for arsenic phytotoxicity on eggplant

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Glasshouse pot experiments were conducted to evaluate the efficacy of Purpureocillium lilacinum PLSAU-1 (Pl) either alone or in combination with Glomus sp. (G) to control southern root-knot nematode, Meloidogyne incognita (Mi) in Solanum melongena in arsenic (AS)-contaminated soil. Root fragments of maize seedlings were applied to 5 g roots containing approximately 200 G colonized root fragments/100 g potting soil and G colonized 100 g rhizosphere soil of maize containing 30 chlamydospores/g soil and thoroughly mixed with sterilized potting soil for the G treatment. Pl was applied to the potting soil at 5 × 106colony-forming units (CFU/g soil). AS solution was added to the potting soil at 50 mg kg−1. Sixteen treatments comprising single and combined applications of Pl, G, AS, and Mi with five replications were applied and pots were randomly arranged in the glasshouse. Single nematode-free eggplant seedlings (30-days old) were transplanted. Eggs of Mi were inoculated at 10000 eggs/seedling pot. Data were recorded on root gall index, plant growth parameters, N, P, K and S uptake, and AS uptake 2 months after transplantation. The combined application of Pl and G enhanced plant growth, leaf area, chlorophyll content, nutrients uptake and reduced AS toxicity. Gall index and AS uptake were reduced by 84.50% and 51.72%, respectively with the combined application of Pl and G. We conclude that Pl and G can be integrated as biological management tools against Mi in AS polluted vegetable growing areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmed, H. U., & Hossain, M. (1985). Crop disease survey and establishment of herbarium at BARI. Final report of the project (1982-85), Plant Pathology Division, BARI, Joydebpur, Gazipur, 107.

  • Alam, M. Z., Hoque, M. A., Ahammed, G. J., & Carpenter-Boggs, L. (2019). Arbuscular mycorrhizal fungi reduce arsenic uptake and improve plant growth in Lens culinaris. PLoSONE, 14(5), e0211441. https://doi.org/10.1371/journal.pone.0211441.

    Article  CAS  Google Scholar 

  • Al-Amri, S. M. (2013). The functional roles of arbuscular mycorrhizal fungi in improving growth and tolerance of Vicia faba plants grown in wastewater contaminated soil. African Journal of Microbiology Research, 7(35), 4435–4442.

    CAS  Google Scholar 

  • Ali, M. M., Sani, M. N. H., Arifunnahar, M., Aminuzzaman, F. M., & Mridha, M. A. U. (2018). Influence of arbuscular mycorrhizal fungi on growth, nutrient uptake and disease suppression of some selected vegetable crops. Azarian Journal of Agriculture, 5(6), 190–196.

    Google Scholar 

  • Al-Raddad, A. M. (1995). Interaction of Glomus mosseae and Paecilomyces lilacinus on Meloidogyne javanica of tomato. Mycorrhiza, 5(3), 233–236.

    Google Scholar 

  • Aminuzzaman, F. M., & Liu X. Z. (2011). Biological control potentiality of Paecilomyces lilacinus newly recorded from Bangladesh. TWAS ROESEAP-UB symposium on industrial biotechnology towards a bio based economy of developing countries, August 26–30. Beijing, China, 63.

  • Aminuzzaman, F., Duan, W. J., Xie, X. Y., & Liu, X. Z. (2009). Biological control of the root-knot nematode Meloidogyne incognita by alginate pellets of Paecilomyces lilacinus and Pochonia chlamydosporia. Journal of Nematology, 41, 302 (Abstr.).

    Google Scholar 

  • Aminuzzaman, F. M., Xie, H. Y., Duan, W. J., Sun, B. D., & Liu, X. Z. (2013). Isolation of nematophagous fungi from eggs and females of Meloidogyne spp. and evaluation of their biological control potential. Biocontrol Science and Technology, 23(2), 170–182.

    Google Scholar 

  • Aminuzzaman, F. M., Jahan, S. N., Shammi, J., Mitu, A. I., & Liu, X. Z. (2018). Isolation and screening of fungi associated with eggs and females of root-knot nematodes and their biocontrol potential against Meloidogyne incognita in Bangladesh. Archives of Phytopathology and Plant Protection, 51(5–6), 288–308.

    Google Scholar 

  • Anastasiadis, I. A., Giannakou, I. O., Prophetou-Ath-anasiadou, D. A., & Gowen, S. R. (2008). The combined effect of the application of a biocontrol agent Paecilomyces lilacinus, with various practices for the control of root-knot nematodes.Crop. Protection, 27(3–5), 352–361.

    Google Scholar 

  • Anwar, S. A., Mckenry, M. V., & Legari, A. U. (2009). Host suitability of sixteen vegetable crop genotypes for Meloidogyne incognita. Journal of Nematology, 41, 64–65.

    Google Scholar 

  • Arifunnahar, M., Ali, M. M., Islam, R., Mridha, M. A. U., & Aminuzzaman, F. M. (2017). Effect of arbuscular mycorrhizal fungi on growth and nutrient uptake of some vegetable crops. International Journal of Applied Research, 3(3), 1–6.

    Google Scholar 

  • Bai, J., Lin, X., Yin, R., Zhang, H., Junhua, W., Xueming, C., & Yongming, L. (2008). The influence of arbuscular mycorrhizal fungi on as and P uptake by maize (Zea mays L.) from as-contaminated soils. Applied Soil Ecology, 38(2), 137–145.

    Google Scholar 

  • Baidoo, R., Mengistu, T., McSorley, R., Stamps, R. H., Brito, J., & Crow, W. T. (2017). Management of root-knot nematode (Meloidogyne incognita) on Pittosporum tobira under greenhouse, field and on-farm conditions in Florida. Journal of Nematology, 49(2), 133–139.

    CAS  PubMed  PubMed Central  Google Scholar 

  • BBS. (2015). Year book of Agricultural Statistics of Bangladesh. Statistics Division, Bangladesh Bureau of Statistics. Ministry of Planning, Government of the People’s Republic of Bangladesh, 148.

  • Bhat, M. S., & Mahmood, I. (2000). Role of Glomus mosseae and Paecilomyces lilacinus in the management of root-knot nematode on tomato. Archives of Phytopathology and Plant Protection, 33(2), 131–140.

    Google Scholar 

  • Bridge, J., & Page, S. L. J. (1980). Estimation of root-knot nematode infestation levels on roots using a rating chart. Tropical Pest Management, 26, 296–298.

    Google Scholar 

  • Budi, S. W., Blal, B., & Gianinazzi, S. (1999). Surface-sterilization of Glomus mosseae sporocarps for studying endomycorrhization in vitro. Mycorrhiza, 9, 65–68.

    Google Scholar 

  • Cabanillas, E., & Barker, K. R. (1989). Impact of Paecilomyces lilacinus inoculum level and application time on control of Meloidogyne incognita on tomato. Journal of Nematology, 21(1), 115–120.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cagras, S., Sari, N., & Ortas, I. (2000). The effects of vesicular-arbuscular mycorrhizae on the plant growth and nutrient uptake of cucumber. Turkish Journal of Agriculture and Forestry, 24, 571–578.

    Google Scholar 

  • Caporale, A. G., Sarkar, D., Datta, R., Punamiya, P., & Violante, A. (2014). Effect of arbuscular mycorrhizal fungi (Glomus spp.) on growth and arsenic uptake of vetiver grass (Chrysopogon zizanioides L.) from contaminated soil and water systems. Journal of Soil Science and Plant Nutrition, 14(4), 955–972.

    Google Scholar 

  • Cavello, I. A., Hours, R. A., Rojas, N. L., & Cavalitto, S. F. (2013). Purification and characterization of a keratinolytic serine protease from Purpureocillium lilacinum LPS # 876. Process Biochemistry, 48(5–6), 972–978.

    CAS  Google Scholar 

  • Crow, W. T. (2013). Effects of a commercial formulation of Paecilomyces lilacinus strain 251 on overseeded bermudagrass infested with Belonolaimus longicaudatus. Journal of Nematology, 45, 223–227.

    PubMed  PubMed Central  Google Scholar 

  • Daniels, B. A., & Skipper, H. D. (1982). Methods for the recovery and quantitative estimation of propagules from soil. In N. C. Schenck (Ed.), Methods and Principles of Mycorrhizal Research (p. 244). St Paul: American Phytopathological Society.

    Google Scholar 

  • Ebel, R. C., Stodola, A. J. W., Duan, X., & Auge, R. M. (1994). Non hydraulic root-to-shoot signalling in mycorrhizal and non-mycorrhizal sorghum exposed to partial soil drying or root severing. New Phytologist, 127, 495–506.

    Google Scholar 

  • Elahi, F. E., Aminuzzaman, F. M., Mridha, M. A. U., Begum, B., & Harun, A. K. M. Y. (2010a). AMF inoculation reduced arsenic toxicity and increased growth, nutrient uptake and chlorophyll content of tomato grown in arsenic amended soil. Advances in Environmental Biology, 4(2), 194–200.

    CAS  Google Scholar 

  • Elahi, F. E., Mridha, M. A. U., & Aminuzzaman, F. M. (2010b). Influence of AMF inoculation on growth, nutrient uptake, arsenic toxicity and chlorophyll content of eggplant grown in arsenic amended soil. Advances in Natural and Applied Sciences, 4(2), 184–192.

    CAS  Google Scholar 

  • Elahi, F. E., Mridha, M. A. U., & Aminuzzaman, F. M. (2012). Role of AMF on plant growth, nutrient uptake, arsenic toxicity and chlorophyll content of chili grown in arsenic amended soil. Bangladesh Journal of Agricultural Research, 37(4), 635–644.

    Google Scholar 

  • Elsherbiny, E. A., Taher, M. A., & Elsebai, M. F. (2019). Activity of Purpureocillium lilacinum filtrates on biochemical characteristics of Sclerotinia sclerotiorum and induction of defense responses in common bean. European Journal of Plant Pathology, 155, 39–52.

    CAS  Google Scholar 

  • FAO. (2014). FAOSTAT production databases. Available online at: http://www.faostat.fao.org (Accessed January 30, 2017).

  • Frary, A., Doganlar, S., & Daunay, M. C. (2007). Eggplant. In C. Kole (Ed.), Vegetables SE- 9, Genome Mapping and Molecular Breeding in Plants (pp. 287–313). Berlin: Springer. https://doi.org/10.1007/978-3-540-34536-7_9.

    Chapter  Google Scholar 

  • Gadd, G. M., Bahri-Esfahani, J., Li, Q., Rhee, Y. J., Wei, Z., Fomina, M., & Liang, X. (2014). Oxalate production by fungi: Significance in geomycology, biodeterioration and bioremediation. Fungal Biology Reviews, 28, 36–55. https://doi.org/10.1016/j.fbr.2014.05.001.

    Article  Google Scholar 

  • Gerdemann, J. W., & Nicolson, T. H. (1963). Spores of mycorrhizal endogone species extracted from soil by wet sieving and decanting. Transactions of the British Mycological Society, 46(2), 235–244.

    Google Scholar 

  • Giovannetti, M., & Mosse, B. (1980). An evaluation of techniques for measuring vesicular-arbuscular mycorrhizal infection in roots. New Phytologist, 84, 489–499.

    Google Scholar 

  • Giri, B., Kapoor, R., & Mukerji, K. G. (2005). Effect of the arbuscular mycorrhizae Glomus fasciculatum and G. macrocarpum on the growth and nutrient content of Cassia siamea in a semi-arid Indian wasteland soil. New Forests, 29(1), 63–73.

    Google Scholar 

  • Gomez, K. A., & Gomez, A. A. (1984). Statistical procedures for agricultural research (2nd ed., p. 680). New York: Wiley.

    Google Scholar 

  • Gonzalez-Chavez, M. C., Harris, P. J., Dodd, J., & Meharg, A. A. (2002). Arbuscular mycorrhizal fungi enhanced arsenate resistance on Holcus lanatus. New Phytologist, 155, 163–171.

    CAS  Google Scholar 

  • Gupta, M. L., & Janardhanan, K. K. (1991). Mycorrhizal association of Glomus aggregatum with palmarosa enhances growth and biomass. Plant and Soil, 131, 261–263.

    Google Scholar 

  • Hildebrandt, U., Regvar, M., & Bothe, H. (2007). Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry, 68(1), 139–146.

    CAS  PubMed  Google Scholar 

  • Holbrook, C. C., Knouft, D. A., & Dickson, D. W. (1983). A technique for screening peanuts for resistance to Meloidogyne arenaria. Plant Disease, 67, 957–958.

    Google Scholar 

  • Huang, W.-K., Cui, J.-K., Liu, S.-M., Kong, L.-A., Wu, Q.-S., Peng, H., He, W.-T., Sun, J.-H., & Peng, D.-L. (2016). Testing various biocontrol agents against the root-knot nematode (Meloidogyne incognita) in cucumber plants identifies a combination of Syncephalastrum racemosum and Paecilomyces lilacinus as being most effective. Biological Control, 92, 31–37.

    Google Scholar 

  • Jaizme-Vega, M. C., Rodríguez-Romero, A. S., & Núñez, L. A. B. (2006). Effect of the combined inoculation of arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria on papaya (Carica Papaya L.) infected with the root-knot nematode Meloidogyne incognita. Fruits, 61, 152–162.

    Google Scholar 

  • Jatala, P. (1986). Biological control of plant parasitic nematodes. Annual Review of Phytopathology, 24, 453–489.

    Google Scholar 

  • Jones, J. B., Benjamin, B., & Mills, H. A. (1991). Plant Analysis Handbook: A practical sampling, preparation, analysis, and interpretation guide 1 (p. 213). USA: Macro-Micro Publishing.

    Google Scholar 

  • Kelkar, T. S., & Bhalerao, S. A. (2013). Beneficiary effect of arbuscular mycorrhiza to Trigonella foenum-graceum in contaminated soil by heavy metal. Research Journal of Recent Sciences, 2, 29–32.

    CAS  Google Scholar 

  • Khalil, M. S. E. H., Allam, A. F. G., & Barakat, A. S. T. (2012). Nematicidal activity of some bio-pesticide agents and microorganisms against root-knot nematode on tomato plants under greenhouse conditions. Journal of Plant Protection Research, 52(1), 47–52.

    CAS  Google Scholar 

  • Khan, A., Williams, K. L., & Nevalainen, H. K. M. (2004). Effects of Paecilomyces lilacinus protease and chitinase on the eggshell structures and hatching of Meloidogyne javanica juveniles. Biological Control, 31(3), 346–352.

    CAS  Google Scholar 

  • Khan, A., Williams, K. L., & Nevalainen, H. K. M. (2006). Control of plant-parasitic nematodes by Paecilomyces lilacinus and Monacrosporium lysipagum in pot trials. BioControl, 51, 643–658.

    Google Scholar 

  • Khan, A., Tariq, M., Asif, M., Khan, F., Ansari, T., & Siddiqui, M. A. (2019). Integrated management of Meloidogyne incognita infecting Vigna radiata L. using biocontrol agent Purpureocillium lilacinum. Trends Applied Sciences Research, 14, 119–124.

    Google Scholar 

  • Kiewnick, S., & Sikora, R. A. (2004). Optimizing the efficacy of Paecilomyces lilacinus (strain251) for the control of root-knot nematodes. Communications in Agricultural and Applied Biological Sciences, 69(3), 373–380.

    CAS  PubMed  Google Scholar 

  • Kiewnick, S., & Sikora, R. A. (2006). Biological control of the root-knot nematode Meloidogyne incognita by Paecilomyces lilacinus strain 251. Biological Control, 38(2), 179–187.

    Google Scholar 

  • Kiewnick, S., Neumann, S., Sikora, R. A., & Frey, J. E. (2011). Effect of Meloidogyne incognita inoculum density and application rate of Paecilomyces lilacinus strain 251 on biocontrol efficacy and colonization of egg masses analyzed by real-time quantitative PCR. Journal of Phytopathology, 101(1), 105–112.

    CAS  Google Scholar 

  • Kiriga, A. W., Haukeland, S., Kariuki, G. M., Coyne, D. L., & Beek, N. V. (2018). Effect of Trichoderma spp. and Purpureocillium lilacinum on Meloidogyne javanica in commercial pineapple production in Kenya. Biological Control, 119, 27–32.

    Google Scholar 

  • Koske, R. E., & Gemma, J. H. (1989). A modified procedure for staining root to detect VA mycorrhizas. Mycological Research, 92, 486–505.

    Google Scholar 

  • Lan, X., Zhang, J., Zong, Z., Ma, Q., & Wang, Y. (2017). Evaluation of the biocontrol potential of Purpureocillium lilacinum QLP12 against Verticillium dahliae in eggplant. BioMed Research International, Article ID, 4101357, 1–8. https://doi.org/10.1155/2017/4101357.

    Article  CAS  Google Scholar 

  • Li, T., Lin, G., Zhang, X., Chen, Y., Zhang, S., & Chen, B. (2014). Relative importance of an arbuscular mycorrhizal fungus (Rhizophagus intraradices) and root hairs in plant drought tolerance. Mycorrhiza, 24(8), 595–602.

    PubMed  Google Scholar 

  • Li, H., Sun, Y., Jiang, X., Chen, B., & Zhang, X. (2018). Arbuscular mycorrhizal fungi alleviate arsenic toxicity to Medicago sativa by influencing arsenic speciation and partitioning. Ecotoxicology and Environmental Safety, 157, 235–243.

    CAS  PubMed  Google Scholar 

  • Liu, X. Z., & Chen, S. Y. (2001). Screening isolates of Hirsutella species for bio-control of Heterodera glycines. Biocontrol Science and Technology, 11, 151–160.

    Google Scholar 

  • Liu, Y., Zhu, Y. G., Chen, B. D., Christie, P., & Li, X. L. (2005). Influence of the arbuscular mycorrhizal fungus Glomus mosseae on uptake of arsenate by the as hyperaccumulator fern Pteris vittata L. Mycorrhiza, 15(3), 187–192.

    CAS  PubMed  Google Scholar 

  • Liu, J., Sun, J., Qiu, J., Liu, X., & Xiang, M. (2014). Integrated management of root-knot nematodes on tomato in glasshouse production using nematicides and a biocontrol agent, and their effect on soil microbial communities. Nematology, 16(4), 463–473.

    Google Scholar 

  • Loeppert, R. H., White, N., Biswas, B. K., & Drees, R. (2005). Mineralogy and arsenic bonding in Bangladesh rice paddy soils. In: Behavior of arsenic in aquifers, soils and plants (Conference Proceedings), Dhaka, 2005.

  • López-Gómez, M., & Verdejo-Lucas, S. (2014). Penetration and reproduction of root-knot nematodes on cucurbit species. European Journal of Plant Pathology, 138, 863–871.

    Google Scholar 

  • Lovato, P. E., Garcia-Figueres, F., & Camprubí, A. (2014). A semiaxenic phototrophic system to study interactions between arbuscular mycorrhizal and pathogenic fungi in woody plants. European Journal of Plant Pathology, 140, 207–212.

    Google Scholar 

  • Marro, N., Lax, P., Cabello, M., Doucet, M. E., & Becerra, A. G. (2014). Use of the arbuscular mycorrhizal fungus Glomus intraradices as biological control agent of the nematode Nacobbus aberrans parasitizing tomato. Brazilian Archives of Biology and Technology, 57(5), 668–674.

    Google Scholar 

  • Marschner, H., & Dell, B. (1994). Nutrient uptake in mycorrhizal symbiosis. Plant and Soil, 159(1), 89–102.

    CAS  Google Scholar 

  • Meharg, A. A., & Hartley-Whitaker, J. (2002). Arsenic uptake and metabolism in arsenic resistant and non resistant plant species. New Phytologist, 154, 29–43 25.

    CAS  Google Scholar 

  • Meharg, A. A., & Rahman, M. M. (2003). Arsenic contamination of Bangladesh paddy field soils; implications for rice contribution to arsenic consumption. Environmental Science and Technology, 37, 229–234.

    CAS  PubMed  Google Scholar 

  • Mishra, J., Singh, R., & Arora, N. K. (2017). Alleviation of heavy metal stress in plants and remediation of soil by rhizosphere microorganisms. Frontiers in Microbiology, 8, 1706. https://doi.org/10.3389/fmicb.2017.01706.

    Article  PubMed  PubMed Central  Google Scholar 

  • Oclarit, E. L., & Cumagun, C. J. R. (2009). Evaluation of the efficacy of Paecilomyces lilacinus as biological control agent of Meloidogyne incognita attacking tomato. Journal of Plant Protection Research, 49(4), 337–340.

    Google Scholar 

  • Ortega-Larrocea, M. P., Siebe, C., Estrada, A., & Webster, R. (2007). Mycorrhizal inoculum potential of arbuscular mycorrhizal fungi in soils irrigated with wastewater for various lengths of time, as affected by heavy metals and available P. Applied Soil Ecology, 37, 129–138.

    Google Scholar 

  • Panwar, J. D. S. (1993). Effect of VAM and Azospirillum on growth and yield of wheat. Indian Journal of Plant Physiology, 34, 357–361.

    Google Scholar 

  • Park, J. O., Hargreaves, J. R., McConville, E. J., Stirling, G. R., Ghisalberti, E. L., & Sivasithamparan, K. (2004). Production of leucinostatis and nematicidal activity of Australian isolates of Paecilomyces lilacinus (Thom) Samson. Letters in Applied Microbiology, 38(3), 271–276.

    CAS  PubMed  Google Scholar 

  • Peiris, P. U. S., Li, Y., Brown, P., & Xu, C. (2020). Fungal biocontrol against Meloidogyne spp. in agricultural crops: A systematic review and meta-analysis. Biological Control, 144, 104235.

    CAS  Google Scholar 

  • Perveen, Z., & Shahzad, S. (2013). A comparative study of the efficacy of Paecilomyces species against root-knot nematode Meloidogyne incognita. Pakistan Journal of Nematology, 31(2), 125–131.

    Google Scholar 

  • Rao, M. S., Reddy, P. P., & Nagesh, M. (1998). Evaluation of plant based formulations of Trichoderma harzianum for the management of Meloidogyne incognita on eggplant. Nematologia Mediterranea, 26(1), 59–62.

    Google Scholar 

  • Rumbos, C., Reimann, S., Kiewnick, S., & Sikora, R. A. (2006). Interactions of Paecilomyces lilacinus strain 251 with the mycorrhizal fungus Glomus intraradices: Implications for Meloidogyne incognita control on tomato. Biocontrol Science and Technology, 16(9), 981–986.

    Google Scholar 

  • Sarven, M. S., Aminuzzaman, F. M., & Huq, M. E. (2019). Dose-response relations between Purpureocillium lilacinum PLSAU-1 and Meloidogyne incognita infecting brinjal plant on plant growth and nematode management: A greenhouse study. Egyptian Journal of Biological Pest Control, 29, 26.

    Google Scholar 

  • Schwarzott, D., Walker, C., & Schüßler, A. (2001). Glomus, the largest genus of the arbuscular mycorrhizal fungi (Glomales), is nonmonophyletic. Molecular Phylogenetics and Evolution, 21(2), 190–197.

    CAS  PubMed  Google Scholar 

  • Sharma, W., & Trivedi, P. C. (1997). Concomitant effect of Paecilomyces lilacinus and vesicular arbuscular mycorrhizal fungi on root-knot nematode infested okra. Annals of Plant Protection Sciences, 5(1), 70–84.

    Google Scholar 

  • Silva, S. D., Carneiro, R. M. D. G., Faria, M., Souza, D. A., Monnerat, R. G., & Lopes, R. B. (2017). Evaluation of Pochonia chlamydosporia and Purpureocillium lilacinum for suppression of Meloidogyne enterolobii on tomato and banana. Journal of Nematology, 49(1), 77–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh, S., Pandey, R. K., & Goswami, B. K. (2013). Bio-control activity of Purpureocillium lilacinum strains in managing root-knot disease of tomato caused by Meloidogyne incognita. Biocontrol Science and Technology, 23, 12,1469–12,1489.

    Google Scholar 

  • Singh, R., Tiwari, S., Patel, R. P., Soni, S. K., & Kalra, A. (2018). Bioinoculants and AM fungus colonized nursery improved management of complex root disease of Coleus forskohlii Briq. under field conditions. Biological Control, 122, 11–17.

    Google Scholar 

  • Smith, S. E., Christophersen, H. M., Pope, S., & Smith, F. A. (2010). Arsenic uptake and toxicity in plants: Integrating mycorrhizal influences. Plant and Soil, 327(1–2), 1–21.

    CAS  Google Scholar 

  • Spagnoletti, F., & Lavado, R. S. (2015). The arbuscular mycorrhiza Rhizophagus intraradices reduces the negative effects of arsenic on soybean plants. Agronomy, 5, 188–199.

    Google Scholar 

  • Spagnoletti, F. N., Cornero, M., & Chiocchio, V. (2020). Arbuscular mycorrhiza protects soybean plants against Macrophomina phaseolina even under nitrogen fertilization. European Journal of Plant Pathology, 156, 839–849.

    CAS  Google Scholar 

  • Talukdar, M. J. (1974). Plant diseases in Bangladesh. Journal of Agricultural Research, 1(1), 71.

    Google Scholar 

  • Thygesen, K., Larsen, J., & Bødker, L. (2004). Arbuscular mycorrhizal fungi reduce development of pea root-rot caused by Aphanomyces euteiches using oospores as pathogen inoculum. European Journal of Plant Pathology, 110, 411–419.

    CAS  Google Scholar 

  • Udo, I. A., Uguru, M. I., & Ogbuji, R. O. (2013). Pathogenicity of Meloidogyne incognita race 1 on tomato as influenced by different arbuscular mycorrhizal fungi and bioformulated Paecilomyces lilacinus in a dysteric cambisol soil. Journal of Plant Protection Research, 53(1), 71–78.

    Google Scholar 

  • Udo, I. A., Osai, E. O., & Ukeh, D. A. (2014). Management of root-knot disease on tomato with bioformulated Paecilomyces lilacinus and leaf extract of Lantana camara. Brazilian Archives of Biology and Technology, 57(4), 486–492.

    Google Scholar 

  • Venkatesan, M., Gaur, H. S., & Datta, S. P. (2013). Effect of root-knot nematode, Meloidogyne graminicola on the uptake of macronutrients and arsenic and plant growth of rice. Vegetos, 26(2), 112–120.

    Google Scholar 

  • Yang, H., Dai, Y., Wang, X., Zhang, Q., Zhu, L., & Bian, X. (2014). Meta-analysis of interactions between arbuscular mycorrhizal fungi and biotic stressors of plants. The Scientific World Journal, 2014(11), Article ID 746506.

Download references

Acknowledgements

We thank the anonymous reviewers for their kind review of this article. This research work was supported by the TWAS (The World Academy of Sciences for the advancement of Science in developing countries) through a grant to F. M. Aminuzzaman [Research Grant No.:13-246 RG/BIO/AS_/UNESCO FR: 3240277693].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. M. Aminuzzaman.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This research did not involve human participants or any animal experimentation.

Informed consent

This article is original and has not been submitted or published elsewhere.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalid, H., Aminuzzaman, F.M., Amit, K. et al. Evaluation of the combined application of Purpureocillium lilacinum PLSAU-1 and Glomus sp. against Meloidogyne incognita: implications for arsenic phytotoxicity on eggplant. Eur J Plant Pathol 159, 139–152 (2021). https://doi.org/10.1007/s10658-020-02150-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-020-02150-2

Keywords

Navigation