Skip to main content
Log in

Towards real-time prediction of residual stresses induced by peripheral milling of Ti–6Al–4V

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

Residual stresses introduced into components in the course of manufacturing processes may considerably impair fatigue life and therefore the operational reliability and safety of the final product. Particularly in critical applications in the aerospace industry, where peripheral milling is a common surface finishing operation for components made from the titanium alloy Ti–6Al–4V, it is desirable to control the introduced residual stresses in the process while accounting for disturbance quantities such as tool wear. To this end, we propose a numerical scheme for the prediction of milling induced residual stresses that provides sufficient efficiency for real-time application. The scheme is based on a two-dimensional model where semi-analytical approaches from contact theory and thermoelasticity are combined with an approximate elasto-plastic solution technique based on an algorithm established in rolling contact mechanics to achieve the required performance in the plastic domain. Following the derivation of the numerical solution strategy, we turn our attention to the peripheral milling process under consideration and present predictions for the induced residual stresses along with a discussion of the general modeling approach, the major influencing factors on the predictions as well as efficiency aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Abboud, E., Shi, B., Attia, H., Thomson, V., Mebrahtu, Y.: Finite element-based modeling of machining-induced residual stresses in Ti–6Al–4V under finish turning conditions. Procedia Cirp 8, 63–68 (2013). https://doi.org/10.1016/j.procir.2013.06.066

    Article  Google Scholar 

  2. Altintas, Y., Ber, A.: Manufacturing automation: metal cutting mechanics, machine tool vibrations, and CNC design. Appl. Mech. Rev. 54(5), B84–B84 (2001)

    Article  Google Scholar 

  3. Barber, J.: Thermoelastic displacements and stresses due to a heat source moving over the surface of a half plane. J. Appl. Mech. 51, 637 (1984)

    Article  Google Scholar 

  4. Boley, B.A., Weiner, J.H.: Theory of Thermal Stresses. Courier Corporation, North Chelmsford (2012)

    MATH  Google Scholar 

  5. Boussinesq, J.: Application Des Potentiels À L’étude de L’équilibre Et Du Mouvement Des Solides Élastiques, Principalement Au Calcul Des Deformations Et Des Pressions Que Produisent, Dans Ces Solides, Des Efforts Quelconques Exercés Sur und Petite Partie de Leur Surface Ou de Leur Intérieur; memoire Suivi de Notes Étendues Sur Divers Points de Physique Mathématique Et D’analyse; Par MJ Boussinesq. Paris, Gauthier-Villars (1885)

  6. Bryant, M.: Thermoelastic solutions for thermal distributions moving over half space surfaces and application to the moving heat source. J. Appl. Mech. 55, 87 (1988). https://doi.org/10.1115/1.3173665

    Article  ADS  Google Scholar 

  7. Calamaz, M., Coupard, D., Girot, F.: A new material model for 2d numerical simulation of serrated chip formation when machining titanium alloy Ti–6Al–4V. Int. J. Mach. Tools Manuf. 48(3–4), 275–288 (2008). https://doi.org/10.1016/j.ijmachtools.2007.10.014

    Article  Google Scholar 

  8. Carslaw, H.S., Jaeger, J.C.: Conduction of Heat in Solids, 2nd edn. Clarendon Press, Oxford (1959)

    MATH  Google Scholar 

  9. Cerruti, V.: Ricerche intorno all’equilibrio de’corpi elastici isotropi: memoria. Coi tipi del Salviucci (1882)

  10. Denkena, B., Nespor, D., Böß, V., Köhler, J.: Residual stresses formation after re-contouring of welded Ti–6Al–4V parts by means of 5-axis ball nose end milling. CIRP J. Manuf. Sci. Technol. 7(4), 347–360 (2014). https://doi.org/10.1016/j.cirpj.2014.07.001

    Article  Google Scholar 

  11. Grove, T., Köhler, J., Denkena, B.: Residual stresses in milled \(\beta \)-annealed Ti–6Al–4V. Procedia CIRP 13, 320–326 (2014). https://doi.org/10.1016/j.procir.2014.04.054. 2nd CIRP Conference on Surface Integrity (CSI)

    Article  Google Scholar 

  12. Huang, X., Zhang, X., Ding, H.: An analytical model of residual stress for flank milling of Ti–6Al–4V. Procedia Cirp 31, 287–292 (2015)

    Article  Google Scholar 

  13. Jiang, Y., Sehitoglu, H.: An analytical approach to elastic–plastic stress analysis of rolling contact. ASME J. Tribol. 116, 577–587 (1994). https://doi.org/10.1115/1.2928885

    Article  Google Scholar 

  14. Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1987)

    Google Scholar 

  15. Ju, Y., Farris, T.: FFT thermoelastic solutions for moving heat sources. ASME J. Tribol. 119, 156–162 (1997). https://doi.org/10.1115/1.2832452

    Article  Google Scholar 

  16. Köhler, J., Grove, T., Maiß, O., Denkena, B.: Residual stresses in milled titanium parts. Procedia CIRP 2, 79–82 (2012). https://doi.org/10.1016/j.procir.2012.05.044

    Article  Google Scholar 

  17. Komanduri, R., Hou, Z.B.: Thermal modeling of the metal cutting process: part I-temperature rise distribution due to shear plane heat source. Int. J. Mech. Sci. 42(9), 1715–1752 (2000). https://doi.org/10.1016/S0020-7403(99)00070-3

    Article  MATH  Google Scholar 

  18. Krystof, J.: Berichte über Betriebswissenschaftliche Arbeiten, vol. 12. VDI Verlag, Tech. rep. (1939)

  19. Lee, W.S., Lin, C.F.: Plastic deformation and fracture behaviour of Ti–6Al–4V alloy loaded with high strain rate under various temperatures. Mater. Sci. Eng. A 241(1–2), 48–59 (1998). https://doi.org/10.1016/S0921-5093(97)00471-1

    Article  Google Scholar 

  20. Ma, Y., Feng, P., Zhang, J., Wu, Z., Yu, D.: Prediction of surface residual stress after end milling based on cutting force and temperature. J. Mater. Process. Technol. 235, 41–48 (2016). https://doi.org/10.1016/j.jmatprotec.2016.04.002

    Article  Google Scholar 

  21. McDowell, D.: An approximate algorithm for elastic–plastic two-dimensional rolling/sliding contact. Wear 211(2), 237–246 (1997). https://doi.org/10.1016/S0043-1648(97)00117-8

    Article  Google Scholar 

  22. McDowell, D., Moyar, G.: Effects of non-linear kinematic hardening on plastic deformation and residual stresses in rolling line contact. Wear 144(1), 19–37 (1991). https://doi.org/10.1016/0043-1648(91)90004-E

    Article  Google Scholar 

  23. Merwin, J., Johnson, K.: An analysis of plastic deformation in rolling contact. Proc. Inst. Mech. Eng. Appl. Mech. Group 177(1), 676–690 (1963). https://doi.org/10.1243/PIME_PROC_1963_177_052_02

    Article  Google Scholar 

  24. Muskhelishvili, N.I.: Some Basic Problems of The Mathematical Theory of Elasticity. Springer, Berlin (2013)

    Google Scholar 

  25. Nespor, D.: Randzonenbeeinflussung durch die rekonturierung komplexer investitionsgüter aus Ti–6Al–4V. PhD thesis, Gottfried Wilhelm Leibniz Universität Hannover (2015)

  26. Sima, M., Özel, T.: Modified material constitutive models for serrated chip formation simulations and experimental validation in machining of titanium alloy Ti–6Al–4V. Int. J. Mach. Tools Manuf. 50(11), 943–960 (2010). https://doi.org/10.1016/j.ijmachtools.2010.08.004

    Article  Google Scholar 

  27. Su, J.C., Young, K.A., Ma, K., Srivatsa, S., Morehouse, J.B., Liang, S.Y.: Modeling of residual stresses in milling. Int. J. Adv. Manuf. Technol. 65(5–8), 717–733 (2013). https://doi.org/10.1007/s00170-012-4211-3

    Article  Google Scholar 

  28. Sun, J., Guo, Y.: A comprehensive experimental study on surface integrity by end milling Ti–6Al–4V. J. Mater. Process. Technol. 209(8), 4036–4042 (2009). https://doi.org/10.1016/j.jmatprotec.2008.09.022

    Article  Google Scholar 

  29. Timošenko, S.P.: Theory of Elasticity. McGraw-Hill, New York (1970)

    Google Scholar 

  30. Ulutan, D., Özel, T.: Machining induced surface integrity in titanium and nickel alloys: a review. Int. J. Mach. Tools Manuf. 51(3), 250–280 (2011). https://doi.org/10.1016/j.ijmachtools.2010.11.003

    Article  Google Scholar 

  31. Ulutan, D., Alaca, B.E., Lazoglu, I.: Analytical modelling of residual stresses in machining. J. Mater. Process. Technol. 183(1), 77–87 (2007). https://doi.org/10.1016/j.jmatprotec.2006.09.032

    Article  Google Scholar 

  32. Ulutan, D., Arisoy, Y., Özel, T., Mears, L.: Empirical modeling of residual stress profile in machining nickel-based superalloys using the sinusoidal decay function. Procedia CIRP 13, 365–370 (2014). https://doi.org/10.1016/j.procir.2014.04.062

    Article  Google Scholar 

  33. Umbrello, D.: Finite element simulation of conventional and high speed machining of Ti6Al4V alloy. J. Mater. Process. Technol. 196(1–3), 79–87 (2008). https://doi.org/10.1016/j.jmatprotec.2007.05.007

    Article  Google Scholar 

  34. Wyen, C.F., Jaeger, D., Wegener, K.: Influence of cutting edge radius on surface integrity and burr formation in milling titanium. Int. J. Adv. Manuf. Technol. 67(1–4), 589–599 (2013). https://doi.org/10.1007/s00170-012-4507-3

    Article  Google Scholar 

  35. Yang, D., Liu, Z., Ren, X., Zhuang, P.: Hybrid modeling with finite element and statistical methods for residual stress prediction in peripheral milling of titanium alloy Ti–6Al–4V. Int. J. Mech. Sci. 108, 29–38 (2016). https://doi.org/10.1016/j.ijmecsci.2016.01.027

    Article  Google Scholar 

  36. Yang, D., Xiao, X., Liu, Y., Sun, J.: Peripheral milling-induced residual stress and its effect on tensile–tensile fatigue life of aeronautic titanium alloy Ti–6Al–4V. Aeronaut. J. 123(1260), 212–229 (2019). https://doi.org/10.1017/aer.2018.151

    Article  Google Scholar 

  37. Zhou, R., Yang, W.: Analytical modeling of residual stress in helical end milling of nickel–aluminum bronze. Int. J. Adv. Manuf. Technol. 89(1–4), 987–996 (2017). https://doi.org/10.1007/s00170-016-9145-8

    Article  Google Scholar 

Download references

Acknowledgements

The scientific work has been supported by the DFG within the research priority program SPP 2086. The authors thank the DFG for this funding and intensive technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Hubertus Wölfle.

Additional information

Communicated by Marcus Aßmus.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wölfle, C.H., Wimmer, M., Shahul Hameed, M.Z. et al. Towards real-time prediction of residual stresses induced by peripheral milling of Ti–6Al–4V. Continuum Mech. Thermodyn. 33, 1023–1039 (2021). https://doi.org/10.1007/s00161-020-00938-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-020-00938-5

Keywords

Navigation