Skip to main content
Log in

A nonlocal isoperimetric problem with density perimeter

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We consider the minimization of an energy functional given by the sum of a density perimeter and a nonlocal interaction of Riesz type with exponent \(\alpha \), under volume constraint, where the strength of the nonlocal interaction is controlled by a parameter \(\gamma \). We show that for a wide class of density functions the energy admits a minimizer for any value of \(\gamma \). Moreover these minimizers are bounded. For monomial densities of the form \(|x|^p\) we prove that when \(\gamma \) is sufficiently small the unique minimizer is given by the ball of fixed volume. In contrast with the constant density case, here the \(\gamma \rightarrow 0\) limit corresponds, under a suitable rescaling, to a small mass \(m=|\Omega |\rightarrow 0\) limit when \(p<d-\alpha +1\), but to a large mass \(m\rightarrow \infty \) for powers \(p>d-\alpha +1\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acerbi, E., Fusco, N., Morini, M.: Minimality via second variation for a nonlocal isoperimetric problem. Commun. Math. Phys. 322(2), 515–557 (2013). https://doi.org/10.1007/s00220-013-1733-y

    Article  MathSciNet  MATH  Google Scholar 

  2. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces. Pure and Applied Mathematics (Amsterdam), vol. 140, 2nd edn. Elsevier, Academic Press, Amsterdam (2003)

    MATH  Google Scholar 

  3. Alama, S., Bronsard, L., Choksi, R., Topaloglu, I.: Droplet breakup in the liquid drop model with background potential. Commun. Contemp. Math. 21(3), 1850022 (2019). https://doi.org/10.1142/S0219199718500220

    Article  MathSciNet  MATH  Google Scholar 

  4. Almgren, F.J.J.: Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints. Mem. Am. Math. Soc. 165(4), 199 (1976)

    MathSciNet  MATH  Google Scholar 

  5. Alvino, A., Brock, F., Chiacchio, F., Mercaldo, A., Posteraro, M.R.: Some isoperimetric inequalities on \({\mathbb{R}}^N\) with respect to weights \(|x|^\alpha \). J. Math. Anal. Appl. 451(1), 280–318 (2017). https://doi.org/10.1016/j.jmaa.2017.01.085

    Article  MathSciNet  MATH  Google Scholar 

  6. Barchiesi, M., Brancolini, A., Julin, V.: Sharp dimension free quantitative estimates for the Gaussian isoperimetric inequality. Ann. Probab. 45(2), 668–697 (2017). https://doi.org/10.1214/15-AOP1072

    Article  MathSciNet  MATH  Google Scholar 

  7. Bonacini, M., Cristoferi, R.: Local and global minimality results for a nonlocal isoperimetric problem on \(\mathbb{R}^N\). SIAM J. Math. Anal. 46(4), 2310–2349 (2014). https://doi.org/10.1137/130929898

    Article  MathSciNet  MATH  Google Scholar 

  8. Bonacini, M., Cristoferi, R., Topaloglu, I.: Minimality of polytopes in a nonlocal anisotropic isoperimetric problem (2020)

  9. Bonacini, M., Knüpfer, H.: Ground states of a ternary system including attractive and repulsive Coulomb-type interactions. Calc. Var. Partial Differ. Equ. 55(5), 114 (2016). https://doi.org/10.1007/s00526-016-1047-y

    Article  MathSciNet  MATH  Google Scholar 

  10. Brasco, L., De Philippis, G., Ruffini, B.: Spectral optimization for the Stekloff–Laplacian: the stability issue. J. Funct. Anal. 262(11), 4675–4710 (2012). https://doi.org/10.1016/j.jfa.2012.03.017

    Article  MathSciNet  MATH  Google Scholar 

  11. Brock, F., Chiacchio, F., Mercaldo, A.: An isoperimetric inequality for Gauss-like product measures. J. Math. Pures Appl. (9) 106(2), 375–391 (2016). https://doi.org/10.1016/j.matpur.2016.02.014

    Article  MathSciNet  MATH  Google Scholar 

  12. Cabré, X., Ros-Oton, X., Serra, J.: Euclidean balls solve some isoperimetric problems with nonradial weights. C. R. Math. Acad. Sci. Paris 350(21–22), 945–947 (2012). https://doi.org/10.1016/j.crma.2012.10.031

    Article  MathSciNet  MATH  Google Scholar 

  13. Choksi, R., Neumayer, R., Topaloglu, I.: Anisotropic liquid drop models. Adv. Calc. Var. https://doi.org/10.1515/acv-2019-0088 (to appear)

  14. Choksi, R., Peletier, M.: Small volume fraction limit of the diblock copolymer problem: I. Sharp-interface functional. SIAM J. Math. Anal. 42(3), 1334–1370 (2010). https://doi.org/10.1137/090764888

    Article  MathSciNet  MATH  Google Scholar 

  15. Choksi, R., Muratov, C.B., Topaloglu, I.: An old problem resurfaces nonlocally: Gamow’s liquid drops inspire today’s research and applications. Not. Am. Math. Soc. 64(11), 1275–1283 (2017). https://doi.org/10.1090/noti1598

    Article  MathSciNet  MATH  Google Scholar 

  16. Cicalese, M., Leonardi, G.P.: A selection principle for the sharp quantitative isoperimetric inequality. Arch. Rat. Mech. Anal. 206(2), 617–643 (2012). https://doi.org/10.1007/s00205-012-0544-1

    Article  MathSciNet  MATH  Google Scholar 

  17. Cinti, E., Glaudo, F., Pratelli, A., Ros-Oton, X., Serra, J.: Sharp quantitative stability for isoperimetric inequalities with homogeneous weights (2020). (preprint)

  18. Cinti, E., Pratelli, A.: The \(\varepsilon -\varepsilon ^\beta \) property, the boundedness of isoperimetric sets in \({\mathbb{R}}^N\) with density, and some applications. J. Reine Angew. Math. 728, 65–103 (2017). https://doi.org/10.1515/crelle-2014-0120

    Article  MathSciNet  MATH  Google Scholar 

  19. De Philippis, G., Franzina, G., Pratelli, A.: Existence of isoperimetric sets with densities “converging from below” on \({\mathbb{R}}^N\). J. Geom. Anal. 27(2), 1086–1105 (2017). https://doi.org/10.1007/s12220-016-9711-1

    Article  MathSciNet  MATH  Google Scholar 

  20. Figalli, A., Fusco, N., Maggi, F., Millot, V., Morini, M.: Isoperimetry and stability properties of balls with respect to nonlocal energies. Commun. Math. Phys. 336(1), 441–507 (2015). https://doi.org/10.1007/s00220-014-2244-1

    Article  MathSciNet  MATH  Google Scholar 

  21. Frank, R.L., Killip, R., Nam, P.T.: Nonexistence of large nuclei in the liquid drop model. Lett. Math. Phys. 106(8), 1033–1036 (2016). https://doi.org/10.1007/s11005-016-0860-8

    Article  MathSciNet  MATH  Google Scholar 

  22. Frank, R.L., Lieb, E.H.: A compactness lemma and its application to the existence of minimizers for the liquid drop model. SIAM J. Math. Anal. 47(6), 4436–4450 (2015). https://doi.org/10.1137/15M1010658

    Article  MathSciNet  MATH  Google Scholar 

  23. Fuglede, B.: Stability in the isoperimetric problem for convex or nearly spherical domains in \(\mathbb{R}^n\). Trans. Am. Math. Soc. 314, 619–638 (1989). https://doi.org/10.1090/S0002-9947-1989-0942426-3

    Article  MathSciNet  MATH  Google Scholar 

  24. Fusco, N., Maggi, F., Pratelli, A.: On the isoperimetric problem with respect to a mixed Euclidean–Gaussian density. J. Funct. Anal. 260(12), 3678–3717 (2011). https://doi.org/10.1016/j.jfa.2011.01.007

    Article  MathSciNet  MATH  Google Scholar 

  25. Fusco, N., Pratelli, A.: Sharp stability for the Riesz potential (2019). (preprint)

  26. Gamow, G.: Mass defect curve and nuclear constitution. Proc. R. Soc. Lond. A 126(803), 632–644 (1930). https://doi.org/10.1098/rspa.1930.0032

    Article  MATH  Google Scholar 

  27. Générau, F., Oudet, E.: Large volume minimizers of a nonlocal isoperimetric problem: theoretical and numerical approaches. SIAM J. Math. Anal. 50(3), 3427–3450 (2018). https://doi.org/10.1137/17M1139400

    Article  MathSciNet  MATH  Google Scholar 

  28. Giusti, E.: The equilibrium configuration of liquid drops. J. Reine Angew. Math. 321, 53–63 (1981). https://doi.org/10.1515/crll.1981.321.53

    Article  MathSciNet  MATH  Google Scholar 

  29. Julin, V.: Isoperimetric problem with a Coulomb repulsive term. Indiana Univ. Math. J. 63(1), 77–89 (2014). https://doi.org/10.1512/iumj.2014.63.5185

    Article  MathSciNet  MATH  Google Scholar 

  30. Julin, V.: Remark on a nonlocal isoperimetric problem. Nonlinear Anal. 154, 174–188 (2017). https://doi.org/10.1016/j.na.2016.10.011

    Article  MathSciNet  MATH  Google Scholar 

  31. Knüpfer, H., Muratov, C.B.: On an isoperimetric problem with a competing nonlocal term I: the planar case. Commun. Pure Appl. Math. 66(7), 1129–1162 (2013). https://doi.org/10.1002/cpa.21451

    Article  MathSciNet  MATH  Google Scholar 

  32. Knüpfer, H., Muratov, C .B.: On an isoperimetric problem with a competing nonlocal term II: the general case. Commun. Pure Appl. Math 67(12), 1974–1994 (2014). https://doi.org/10.1002/cpa.21479

    Article  MathSciNet  MATH  Google Scholar 

  33. Knüpfer, H., Muratov, C.B., Novaga, M.: Low density phases in a uniformly charged liquid. Commun. Math. Phys. 345(1), 141–183 (2016). https://doi.org/10.1007/s00220-016-2654-3

    Article  MathSciNet  MATH  Google Scholar 

  34. Lu, J., Otto, F.: Nonexistence of a minimizer for Thomas-Fermi-Dirac-von Weizsäcker model. Commun. Pure Appl. Math. 67(10), 1605–1617 (2014). https://doi.org/10.1002/cpa.21477

    Article  MATH  Google Scholar 

  35. Maggi, F.: Sets of Finite Perimeter and Geometric Variational Problems: An Introduction to Geometric Measure Theory. Cambridge Studies in Advanced Mathematics, vol. 135. Cambridge University Press, Cambridge (2012). https://doi.org/10.1017/CBO9781139108133

    Book  MATH  Google Scholar 

  36. Misiats, O., Topaloglu, I.: On minimizers of an anisotropic liquid drop model. ESAIM Control Optim. Calc. Var. https://doi.org/10.1051/cocv/2020068 (to appear)

  37. Morgan, F., Pratelli, A.: Existence of isoperimetric regions in \({\mathbb{R}}^n\) with density. Ann. Global Anal. Geom. 43(4), 331–365 (2013). https://doi.org/10.1007/s10455-012-9348-7

    Article  MathSciNet  MATH  Google Scholar 

  38. Muratov, C.B., Zaleski, A.: On an isoperimetric problem with a competing non-local term: quantitative results. Ann. Global Anal. Geom. 47, 63–80 (2014). https://doi.org/10.1007/s10455-014-9435-z

    Article  MathSciNet  MATH  Google Scholar 

  39. Neumayer, R.: A strong form of the quantitative Wulff inequality. SIAM J. Math. Anal. 48(3), 1727–1772 (2016). https://doi.org/10.1137/15M1013675

    Article  MathSciNet  MATH  Google Scholar 

  40. Pratelli, A., Saracco, G.: On the isoperimetric problem with double density. Nonlinear Anal. 177(Part B), 733–752 (2018). https://doi.org/10.1016/j.na.2018.04.009

    Article  MathSciNet  MATH  Google Scholar 

  41. Pratelli, A., Saracco, G.: The \(\varepsilon \)-\(\varepsilon ^\beta \) property in the isoperimetric problem with double density, and the regularity of isoperimetric sets. Adv. Nonlinear Stud. 20(3), 539–555 (2020). https://doi.org/10.1515/ans-2020-2074

    Article  MathSciNet  MATH  Google Scholar 

  42. Ren, X., Wei, J.: Double tori solution to an equation of mean curvature and Newtonian potential. Calc. Var. Partial Differ. Equ. 49(3–4), 987–1018 (2014). https://doi.org/10.1007/s00526-013-0608-6

    Article  MathSciNet  MATH  Google Scholar 

  43. Rigot, S.: Ensembles quasi-minimaux avec contrainte de volume et rectifiabilité uniforme. Mém. Soc. Math. Fr. (N.S.) 82, 104 (2000). https://doi.org/10.24033/msmf.395

    Article  MathSciNet  MATH  Google Scholar 

  44. Rosales, C., Cañete, A., Bayle, V., Morgan, F.: On the isoperimetric problem in Euclidean space with density. Calc. Var. Partial Differ. Equ. 31(1), 27–46 (2008). https://doi.org/10.1007/s00526-007-0104-y

    Article  MathSciNet  MATH  Google Scholar 

  45. Tamanini, I.: Regularity results for almost minimal oriented hypersurfaces in \({\mathbb{R}}^N\). Quaderni del Dipartimento di Matematica dell’ Università di Lecce. http://cvgmt.sns.it/paper/1807/. (1984)

  46. White, B.: A strong minimax property of nondegenerate minimal submanifolds. J. Reine Angew. Math. 457, 203–218 (1994). https://doi.org/10.1515/crll.1994.457.203

    Article  MathSciNet  MATH  Google Scholar 

  47. Ziemer, W.P.: Weakly Differentiable Functions: Sobolev Spaces and Functions of Bounded Variation. Graduate Texts in Mathematics. Springer, New York (1989). https://doi.org/10.1007/978-1-4612-1015-3

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Marco Bonacini and Gian Paolo Leonardi for valuable discussions regarding the properties of density perimeters. We also thank the reviewer for carefully reading the paper and providing many useful suggestions. SA, LB, and AZ were supported via an NSERC (Canada) Discovery Grant. AZ was partially funded by ANID Chile under grants Becas Chile de Postdoctorado en el Extranjero N\(^{\circ }\) 74200091 and FONDECYT de Iniciación en Investigación N \(^{\circ }\) 11201259.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ihsan Topaloglu.

Additional information

Communicated by A. Malchiodi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alama, S., Bronsard, L., Topaloglu, I. et al. A nonlocal isoperimetric problem with density perimeter. Calc. Var. 60, 1 (2021). https://doi.org/10.1007/s00526-020-01865-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-020-01865-8

Mathematics Subject Classification

Navigation