Skip to main content
Log in

The modification of contribution: electric conductivity, dielectric displacement and domain switching in ferroelectric hysteresis loops

  • Rapid communications
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The actual ferroelectric polarization can be misjudged due to the existence of the leakage current. How to distinguish the impact of each part is of great significance to evaluate the actual domain switching polarization and liner polarization. The current (I)–electric field (E) curves are suggested to distinguish the electric displacement contribution of electric conductivity D1, dielectric displacement D2 and domain switching polarization P. However, the previous model cannot accurately estimate the contribution of each part due to the inaccurate assumption. Thus, an alternative model had been constructed to demonstrate respective contributions of D1, D2 and P. Through the IE curves, one baseline was made from the vertex (I > 0) at negative maximum electric field to another vertex (I > 0) at the positive and maximum electric field. The area above the baseline represents the domain switching P by high-order even power. The areas enclosed by I–E curve, baseline, and I = 0 line represent the contribution of electric conductivity. Besides, the parallelogram area represents the contribution of dielectric displacement D2. The accuracy of the present model had been verified by the simulation mean and fabrication in traditional BaTiO3 ferroelectric films. It shows that the contribution of electric conductivity D1 is two times than actual contribution by previous model, and dielectric displacement D2 is of great error than the actual one. And the present model is in more accordance with the actual contribution by constructing more accurate conductance form, and there is only small error in present model. It is revealed that the present model is more suitable to distinguish the contribution of each part than the previous one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. A. Haque, A.R. Mahbub, M.A.A. Mamun, M. Reaz, K. Ghosh, Fabrication and thickness-dependent magnetic studies of tunable multiferroic heterostructures (CFO/LSMO/LAO). Appl Phys A 125, 357 (2019)

    Article  ADS  Google Scholar 

  2. A. Haque, M.A.A. Mamun, M.F.N. Taufique, P. Karnati, K. Ghosh, Large magnetoresistance and electrical transport properties in reduced graphene oxide thin film. IEEE Trans Magn 54, 12 (2018)

    Article  Google Scholar 

  3. N. Kumar, A. Shukla, R.N.P. Choudhary, Structural, dielectric, electrical and magnetic characteristics of lead-free multiferroic Bi(Cd0.5Ti0.5)-BiFeO3 solid solution. J Alloys Comp 1, 747–895 (2018)

    Google Scholar 

  4. N. Kumar, A. Shukla, R.N.P. Choudhary, Structual, electrical and magnetic properties of (Cd, Ti) modified BiFeO3. Phys Lett A 381, 2721 (2017)

    Article  ADS  Google Scholar 

  5. N. Kumar, A. Shukla, N. Kumar, S. Hajra, S. Sahoo, R.N.P. Choudhary, Structual, bulk permittivity and impedance spectra of electronic material: Bi(Fe0.5La0.5)O3. J Mater Sci Electron 30, 1919 (2019)

    Article  Google Scholar 

  6. N. Kumar, A. Shukla, N. Kumar, R.N.P. Choudhary, Effects of milling time on structual, electrical and ferroelectric features of mechanothermally synthesized multi-doped bismuth ferrite. Appl Phys A 126, 181 (2020)

    Article  ADS  Google Scholar 

  7. N. Kumar, A. Shukla, N. Kumar, R.N.P. Choudhary, A. Kumar, Structural, dielectric, electrical and multiferroic characteristics of lead-free multiferroic: Bi(Cd0.5Ti0.5)-BiFeO3 solid solution. RSC Advances 8, 36939 (2018)

    Article  Google Scholar 

  8. N. Kumar, A. Shukla, Processing and characterization of Cd/Ti co-substituted BiFeO3 nanoceramics. Int J Mod Phys B 32, 1840069 (2018)

    Article  ADS  Google Scholar 

  9. L. Thansanga, A. Shukla, N. Kumar, R.N.P. Choudhary, Study of effect of Dy substitution on structural, dielectric, impedance and magnetic properties of bismuth ferrite. J Mater Sci Mater Electron 31, 10006 (2020)

    Article  Google Scholar 

  10. F. Guo, N. Jiang, B. Yang, S.F. Zhao, Segregation particles induced ultrahigh energy storage performances in BiMnO3 modified BaTiO3 films. Appl Phys Lett 114, 253901 (2019)

    Article  ADS  Google Scholar 

  11. F. Guo, Z.F. Shi, B. Yang, S.F. Zhao, The role of PN-likejunction effects in energy storage performances for Ag2O nanoparticle dispersed lead-free K0.5Na0.5NbO3-BiMnO3 films. Nanoscale 12, 7544 (2020)

    Article  Google Scholar 

  12. F. Guo, Z.F. Shi, B. Yang, Y.P. Liu, S.F. Zhao, Flexible lead-free Na05Bi05TiO3-EuTiO3 solid solution film capacitors with stable energy storage performances. Scripta Mater. 184, 52 (2020)

    Article  Google Scholar 

  13. T.D. Zhang, W.L. Li, Y. Zhao, Y. Yu, W.D. Fei, High energy storage performance of opposite double-heterojunction ferroelectricity-insulators. Adv Funct Mater 28, 1706211 (2018)

    Article  Google Scholar 

  14. H. Pan, J. Ma, J. Ma, Q.H. Zhang, X.Z. Liu, B. Guan, L. Gu, X. Zhang, Y.J. Zhang, L.L. Li, Y. Shen, Y.H. Lin, C.W. Nan, Giant energy density and high efficiency achieved in bismuth ferrite-based film capacitors via domain engineering. Nat Commun 9, 1813 (2018)

    Article  ADS  Google Scholar 

  15. H.X. Yan, F. Inam, G. Viola, H.P. Ning, H.T. Zhang, Q.H. Jiang, T. Zeng, Z.P. Gao, M.J. Reece, The contribution of electrical conductivity, dielectric permittivity and domain switching in ferroelectric hysteresis loops. J Adv Dielectr 1, 107 (2011)

    Article  Google Scholar 

  16. E. Brown, C.R. Ma, J. Acharya, B.H. Ma, J. Wu, J. Li, Controlling dielectric and relaxor-ferroelectric properties for energy storage by tuning Pb0.92La0.08Zr0.52Ti0.48O3 film thickness. ACS Mater Inter 6, 22417 (2014)

    Article  Google Scholar 

  17. H. Palneedi, M. Peddigari, G.T. Hwang, D.Y. Jeong, J. Ryu, High-performance dielectric ceramic films for energy storage capacitors: progress and outlook. Adv Funct Mater 28, 1803665 (2018)

    Article  Google Scholar 

  18. Z. Liang, C. Ma, L. Shen, L. Lu, X. Lu, X. Lou, M. Liu, C. Jia, Flexible lead-free oxide film capacitors with ultrahigh energy storage performances in extremely wide operating temperature. Nano Energy 57, 219 (2019)

    ADS  Google Scholar 

  19. B.B. Yang, M.Y. Guo, C.H. Li, D.P. Song, X.W. Tang, R.H. Wei, L. Hu, X.J. Lou, X.B. Zhu, Y.P. Sun, Flexible ultrahigh energy storage density in lead-free heterostructure thin-film capacitors. Appl Phys Lett 115, 243901 (2019)

    Article  ADS  Google Scholar 

  20. M. Reaz, A. Haque, K. Ghosh, Synthesis, characterization, and optimization of magnetoelectric BaTiO3-iron oxide core-shell nanoparticles. Nanomaterials 10, 563 (2020)

    Article  Google Scholar 

  21. M. Reaz, A. Haque, D.M. Cornelison, A. Wanekaya, R. Delong, K. Ghosh, Magneto-luminescent Zinc/Iron oxide core-shell nanoparticles with tunable magnetic properties. Physica E 123, 114090 (2020)

    Article  Google Scholar 

  22. G. Ohm, Die Galvanusche Kette: Mathematisch (T. H. Rieman, Berlin, 1827), p. 181

    Book  Google Scholar 

  23. P.D. Lomenzo, C.C. Chuang, C.Z. Zhou, J.L. Jones, T. Nishida, Doped Hf0.5Zr0.5O2 for high efficiency integrated supercapacitors. Appl Phys Lett 110, 232904 (2017)

    Article  ADS  Google Scholar 

  24. F. Guo, X. Wu, Q.S. Lu, S.F. Zhao, Near room temperature giant negative and positive electrocaloric effects coexisting in lead-free BaZr0.2Ti0.8O3 relaxor ferroelectric films. Ceramics Internat 44, 2803 (2018)

    Article  Google Scholar 

  25. M.A.A. Mamun, A. Haque, A. Pelton, B. Paul, K. Ghosh, Structural, electronic, and magnetic analysis and device characterization of ferroelectric-ferromagnetic heterostructure (BZT–BCT/LSMO/LAO) devices for multiferroic applications. IEEE Trans Magn 54, 12 (2018)

    Article  Google Scholar 

  26. J.Y. Chen, W.Y. Xing, Q. Yun, W. Gao, C.H. Nie, S.F. Zhao, Effects of Ho, Mn Co-doping on ferroelectric fatigue of BiFeO3 thin films. Electron Mater Lett 4, 601 (2015)

    Article  ADS  Google Scholar 

  27. X. Hao, Y. Wang, J. Yang, S. An, J. Xu, High energy-storage performance in Pb0.91La0.09Zr0.65Ti0.35O3 relaxor ferroelectric thin films. J Appl Phys 112, 114111 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 12074204, 11864028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shifeng Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, F., Liu, Y. & Zhao, S. The modification of contribution: electric conductivity, dielectric displacement and domain switching in ferroelectric hysteresis loops. Appl. Phys. A 126, 922 (2020). https://doi.org/10.1007/s00339-020-04111-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04111-2

Keywords

Navigation