Skip to main content
Log in

Comparison of Different Excitation Schemes in Bimodal Atomic Force Microscopy in Air and Liquid Environments

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

Bimodal amplitude modulation atomic force microscopy (AM-AFM) is widely used in nanoscale topography and compositional contrast imaging for various materials. In this work, we use computational simulation to compare the dynamic behaviors of AFM cantilevers in three commonly used excitation schemes in bimodal AM-AFM, i.e., the cantilever base excitation, the cantilever end excitation, and the uniform excitation along the length of the cantilever, in both air and liquid environments. The amplitude and phase spectroscopy curves and the frequency responses acquired from the three excitation schemes are compared and discussed. The results would be useful in guiding the selection of excitation methods and the optimization of imaging conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Garcia R, Perez R. Dynamic atomic force microscopy methods. Surf Sci Rep. 2002;47(6–8):197–301.

    Article  Google Scholar 

  2. Garcia R, Herruzo ET. The emergence of multifrequency force microscopy. Nat Nanotechnol. 2012;7(4):217–26.

    Article  Google Scholar 

  3. Santos S, Lai CY, Olukan T, Chiesa M. Multifrequency AFM: from origins to convergence. Nanoscale. 2017;9(16):5038–43.

    Article  Google Scholar 

  4. Rodriguez TR, Garcia R. Compositional mapping of surfaces in atomic force microscopy by excitation of the second normal mode of the microcantilever. Appl Phys Lett. 2004;84(3):449–51.

    Article  Google Scholar 

  5. Martinez NF, Patil S, Lozano JR, Garcia R. Enhanced compositional sensitivity in atomic force microscopy by the excitation of the first two flexural modes. Appl Phys Lett. 2006;89(14):153115.

    Article  Google Scholar 

  6. Proksch R. Multifrequency, repulsive-mode amplitude-modulated atomic force microscopy. Appl Phys Lett. 2006;89(10):113121.

    Article  Google Scholar 

  7. Lozano JR, Garcia R. Theory of multifrequency atomic force microscopy. Phys Rev Lett. 2008;100(6):076102.

    Article  Google Scholar 

  8. Lozano JR, Garcia R. Theory of phase spectroscopy in bimodal atomic force microscopy. Phys Rev B. 2009;79(1):014110.

    Article  Google Scholar 

  9. Solares SD, Chawla G. Frequency response of higher cantilever eigenmodes in bimodal and trimodal tapping mode atomic force microscopy. Meas Sci Technol. 2010;21(11):125502.

    Article  Google Scholar 

  10. Stark RW. Dynamics of repulsive dual-frequency atomic force microscopy. Appl Phys Lett. 2009;94(5):063109.

    Article  Google Scholar 

  11. Garcia R, Proksch R. Nanomechanical mapping of soft matter by bimodal force microscopy. Eur Polym J. 2013;49(7):1897–906.

    Article  Google Scholar 

  12. Li YH, Yu CB, Gan YY, Jiang P, Yu JX, Ou Y, Zou DF, Huang C, Wang JH, Jia TT, Luo Q, Yu XF, Zhao HJ, Gao CF, Li JY. Mapping the elastic properties of two-dimensional MoS\(_2\) via bimodal atomic force microscopy and finite element simulation. Npj Comput Mater. 2018;4:49.

    Article  Google Scholar 

  13. Martinez NF, Lozano JR, Herruzo ET, Garcia F, Richter C, Sulzbach T, Garcia R. Bimodal atomic force microscopy imaging of isolated antibodies in air and liquids. Nanotechnology. 2008;19(38):384011.

    Article  Google Scholar 

  14. Martinez-Martin D, Herruzo ET, Dietz C, Gomez-Herrero J, Garcia R. Noninvasive protein structural flexibility mapping by bimodal dynamic force microscopy. Phys Rev Lett. 2011;106(19):198101.

    Article  Google Scholar 

  15. Ebeling D, Eslami B, Solares SD. Visualizing the subsurface of soft matter: simultaneous topographical imaging, depth modulation, and compositional mapping with triple frequency atomic force microscopy. ACS Nano. 2013;7(10):10387–96.

    Article  Google Scholar 

  16. Solares SD, Chawla G. Triple-frequency intermittent contact atomic force microscopy characterization: simultaneous topographical, phase, and frequency shift contrast in ambient air. J Appl Phys. 2010;108(5):054901.

    Article  Google Scholar 

  17. Han W, Lindsay SM, Jing T. A magnetically driven oscillating probe microscope for operation in liquids. Appl Phys Lett. 1996;69(26):4111.

    Article  Google Scholar 

  18. Labuda A, Hohlbauch S, Kocun M, Limpoco FT, Kirchhofer N, Ohler B, Hurley D. Tapping mode AFM imaging in liquids with bluedrive photothermal excitation. Microscopy Today. 2018;26(5):12–7.

    Article  Google Scholar 

  19. Ramos D, Tamayo J, Mertens J, Calleja M. Photothermal excitation of microcantilevers in liquids. J Appl Phys. 2006;99(11):124904.

    Article  Google Scholar 

  20. Ratcliff GC, Erie DA, Superfine R. Photothermal modulation for oscillating mode atomic force microscopy in solution. Appl Phys Lett. 1998;72(14):1911–3.

    Article  Google Scholar 

  21. Herruzo ET, Garcia R. Frequency response of an atomic force microscope in liquids and air: magnetic versus acoustic excitation. Appl Phys Lett. 2007;91(13):143113.

    Article  Google Scholar 

  22. Xu X, Raman A. Comparative dynamics of magnetically, acoustically, and Brownian motion driven microcantilevers in liquids. J Appl Phys. 2007;102(3):034303.

    Article  Google Scholar 

  23. Chawla G, Solares SD. Single-cantilever dual-frequency-modulation atomic force microscopy. Meas Sci Technol. 2009;20:015501.

    Article  Google Scholar 

  24. Lee SI, Howell SW, Raman A, Reifenberger R. Nonlinear dynamics of microcantilevers in tapping mode atomic force microscopy: a comparison between theory and experiment. Phys Rev B. 2002;66(10):115409.

    Article  Google Scholar 

  25. García R. Amplitude modulation atomic force microscopy. Weinheim: WILEY-VCH Verlag & Co. KGaA; 2010.

    Book  Google Scholar 

  26. Kiracofe D, Raman A, Yablon D. Multiple regimes of operation in bimodal AFM: understanding the energy of cantilever eigenmodes. Beilstein J Nanotechnol. 2013;4:385–93.

    Article  Google Scholar 

  27. Santos S. Phase contrast and operation regimes in multifrequency atomic force microscopy. Appl Phys Lett. 2014;104(13):143109.

    Article  Google Scholar 

  28. Basak S, Raman A. Dynamics of tapping mode atomic force microscopy in liquids: theory and experiments. Appl Phys Lett. 2007;91(5):064107.

    Article  Google Scholar 

  29. Turner JA, Hirsekorn S, Rabe U, Arnold W. High-frequency response of atomic-force microscope cantilevers. J Appl Phys. 1997;82(3):966–79.

    Article  Google Scholar 

  30. Solares SD. A simple and efficient quasi 3-dimensional viscoelastic model and software for simulation of tapping-mode atomic force microscopy. Beilstein J Nanotechnol. 2015;6:2233–41.

    Article  Google Scholar 

  31. Garcia R, San PA. Attractive and repulsive tip-sample interaction regimes in tapping-mode atomic force microscopy. Phys Rev B. 1999;60(6):4961–7.

    Article  Google Scholar 

  32. Derjaguin BV, Muller VM, Toporov YP. Effect of contact deformations on the adhesion of particles. J Colloid Interface Sci. 1975;53(2):314–26.

    Article  Google Scholar 

  33. San Paulo A, Garcia R. Amplitude, deformation and phase shift in amplitude modulation atomic force microscopy: a numerical study for compliant materials. Surf Sci. 2001;471(1–3):71–9.

    Article  Google Scholar 

  34. Tamayo J, Garcia R. Effects of elastic and inelastic interactions on phase contrast images in tapping-mode scanning force microscopy. Appl Phys Lett. 1997;71:2394–6.

    Article  Google Scholar 

  35. Xu X, Melcher J, Raman A. Accurate force spectroscopy in tapping mode atomic force microscopy in liquids. Phys Rev B. 2010;81(3):035407.

    Article  Google Scholar 

  36. Kiracofe D, Raman A. Microcantilever dynamics in liquid environment dynamic atomic force microscopy when using higher-order cantilever eigenmodes. J Appl Phys. 2010;108(3):034320.

    Article  Google Scholar 

  37. Melcher J, Carrasco C, Xu X, Carrascosa JL, Gomez-Herrero J, de Pablo PJ, Raman A. Origins of phase contrast in the atomic force microscope in liquids. Proc Natl Acad Sci USA. 2009;106(33):13655–60.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the financial support from the National Natural Science Foundation of China (NSFC) under Grant No. 11502182. This work is also supported by “the Fundamental Research Funds for the Central Universities (WUT: 2020IB015)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xilong Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Z., Wen, P. & Zhou, X. Comparison of Different Excitation Schemes in Bimodal Atomic Force Microscopy in Air and Liquid Environments. Acta Mech. Solida Sin. 34, 163–173 (2021). https://doi.org/10.1007/s10338-020-00203-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-020-00203-x

Keywords

Navigation