Skip to main content
Log in

Bedrock reconstruction from free surface data for unidirectional glacier flow with basal slip

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Glacier ice flow is shaped and defined by several properties, including the bedrock elevation profile and the basal slip distribution. The effect of these two basal properties can be present in similar ways in the surface. For bedrock recovery, this makes distinguishing between them an interesting and complex problem. The results of this paper show that in some synthetic test cases it is indeed possible to distinguish and recover both bedrock elevation and basal slip given free surface elevation and free surface velocity. The unidirectional shallow ice approximation is used to compute steady-state surface data for a number of synthetic cases with different bedrock profiles and basal slip distributions. A simple inversion method based on Newton’s method is applied to the known surface data to return the bedrock profile and basal slip distribution. In each synthetic test case, the inversion was successful in recovering both the bedrock elevation profile and the basal slip distribution variables. These results imply that there are a unique bedrock profile and basal slip which give rise to a unique combination of free surface velocity and free surface elevation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Adhikari, S., Marshall, S.J.: Parameterization of lateral drag in flowline models of glacier dynamics. J. Glaciol. 58(212), 1119–1132 (2012). https://doi.org/10.3189/2012JoG12J018

    Article  Google Scholar 

  2. Adhikari, S., Marshall, S.J.: Improvements to shear-deformational models of glacier dynamics through a longitudinal stress factor. J. Glaciol. 57(206), 1003–1016 (2011)

    Article  Google Scholar 

  3. Alley, R.B., Blankenship, D.D., Bentley, C.R., Rooney, S.T.: Deformation of till beneath ice stream B. West Antarctica. Nature 322(6074), 57–59 (1986). https://doi.org/10.1038/322057a0

    Article  Google Scholar 

  4. Barcilon, V., MacAyeal, D.R.: Steady flow of a viscous ice stream across a no-slip/free-slip transition at the bed. J. Glaciol. 39(131), 167–185 (1993). https://doi.org/10.3189/S0022143000015811

    Article  Google Scholar 

  5. Bevan, S.L., Luckman, A., Khan, S.A., Murray, T.: Seasonal dynamic thinning at Helheim Glacier. Earth Planet. Sci. Lett. 415, 47–53 (2015). https://doi.org/10.1016/J.EPSL.2015.01.031

    Article  Google Scholar 

  6. Bierman, P.R., Montgomery, D.R.: Key Concepts in Geomorphology. W.H. Freeman & Co Ltd, San Francisco (2014)

    Google Scholar 

  7. Blatter, H., Greve, R., Abe-Ouchi, A.: Present state and prospects of ice sheet and glacier modelling. Surv. Geophys. 32(4–5), 555–583 (2011). https://doi.org/10.1007/s10712-011-9128-0

    Article  Google Scholar 

  8. Budd, W.F., Keage, P.L., Blundy, N.A.: Empirical studies of ice sliding. J. Glaciol. 23(89), 157–170 (1979). https://doi.org/10.3189/S0022143000029804

    Article  Google Scholar 

  9. Cazenave, A., Gregory, J.M., Jevrejeva, S., Levermann, A., Merrifield, M.A., Milne, G.A., Nerem, R.S., Nunn, P.D., Payne, A.J., Pfeffer, W.T., Stammer, D., Unnikrishnan, A.S.: Sea level change. In: Stocker, T., Qin, D., Plattner, G.K., Tignor, M., Allen, S., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P. (eds) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA., Chap. 13, pp 1137–1216 (2013)

  10. Christoffersen, P., Tulaczyk, S.: Response of subglacial sediments to basal freeze-on 1. Theory and comparison to observations from beneath the West Antarctic ice sheet. J. Geophys. Res. Solid Earth (2003). https://doi.org/10.1029/2002JB001935

    Article  Google Scholar 

  11. Church, J.A., Clark, P.U., Cazenave, A., Gregory, J.M., Jevrejeva, S., Levermann, A., Merrifield, M.A., Milne, G.A., Nerem, S., Nunn, P.D., Payne, A.J., Pfeffer, W.T., Stammer, D., Unnikrishnan, A.S.: Sea level change. In: Stocker, T.F., Qin, G., Plattner, K., Tignor, M., Allen, S., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M. (eds) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, Chap. 13, pp 1137–1216 (2013)

  12. Crüger, T., Fischer, H., von Storch, H.: What do accumulation records of single ice cores in Greenland represent? J. Geophys. Res. Atmos. (2004). https://doi.org/10.1029/2004JD005014

    Article  Google Scholar 

  13. Cuffey, K.M., Paterson, W.S.B.: The Physics of Glaciers. Elsevier, Amsterdam (2010)

    Google Scholar 

  14. Environmeantal Protection Agency: Collecting Snow and Ice Data. (2017). https://www.epa.gov/climate-indicators/collecting-snow-and-ice-data

  15. Farinotti, D., Brinkerhoff, D.J., Clarke, G.K.C., Fürst, J.J., Frey, H., Gantayat, P., Gillet-Chaulet, F., Girard, C., Huss, M., Leclercq, P.W., Linsbauer, A., Machguth, H., Martin, C., Maussion, F., Morlighem, M., Mosbeux, C., Pandit, A., Portmann, A., Rabatel, A., Ramsankaran, R., Reerink, T.J., Sanchez, O., Stentoft, P.A., Singh Kumari, S., van Pelt, W.J.J., Anderson, B., Benham, T., Binder, D., Dowdeswell, J.A., Fischer, A., Helfricht, K., Kutuzov, S., Lavrentiev, I., McNabb, R., Gudmundsson, G.H., Li, H., Andreassen, L.M.: How accurate are estimates of glacier ice thickness? Results from ITMIX, the Ice Thickness Models Intercomparison eXperiment. Cryosphere 11(2), 949–970 (2017). https://doi.org/10.5194/tc-11-949-2017

    Article  Google Scholar 

  16. Flament, T., Rémy, F.: Dynamic thinning of Antarctic glaciers from along-track repeat radar altimetry. J. Glaciol. 58(211), 830–840 (2012). https://doi.org/10.3189/2012JoG11J118

    Article  Google Scholar 

  17. Fowler, A.C.: Sliding with cavity formation. J. Glaciol. 33(115), 255–267 (1987). https://doi.org/10.3189/S0022143000008820

    Article  Google Scholar 

  18. Gessese, A., Heining, C., Sellier, M., Mc Nish, R., Rack, W.: Direct reconstruction of glacier bedrock from known free surface data using the one-dimensional shallow ice approximation. Geomorphology 228, 356–371 (2015). https://doi.org/10.1016/J.GEOMORPH.2014.09.015

    Article  Google Scholar 

  19. Gessesse, A.: Algorithms for bed topography reconstruction in geophysical flows. PhD thesis, University of Canterbury (2014)

  20. Gillet-Chaulet, F.: Assimilation of surface observations in a transient marine ice sheet model using an ensemble Kalman filter. Cryosphere 14(3), 811–832 (2020)

    Article  Google Scholar 

  21. Glen, J.W.: Experiments on the deformation of ice. J. Glaciol. 2(12), 111–114 (1952). https://doi.org/10.3189/S0022143000034067

    Article  Google Scholar 

  22. Greve, R., Blatter, H.: Dynamics of Ice Sheets and Glaciers: Advances in Geophysical and Environmental Mechanics and Mathematics. Springer, Berlin (2009). https://doi.org/10.1007/978-3-642-03415-2

    Book  Google Scholar 

  23. Gudmundsson, G.H., Raymond, M.: On the limit to resolution and information on basal properties obtainable from surface data on ice streams. Cryosphere 2(2), 167–178 (2008)

    Article  Google Scholar 

  24. Heining, C., Sellier, M.: Direct reconstruction of three-dimensional glacier bedrock and surface elevation from free surface velocity. AIMS Geosci. 2(1), 45–63 (2016). https://doi.org/10.3934/geosciences.2016.1.63

    Article  Google Scholar 

  25. Hubbard, B., Glasser, N.: Field Techniques in Glaciology and Glacial Geomorphology. Wiley, Hoboken (2005)

    Google Scholar 

  26. Hutter, K.: The effect of longitudinal strain on the shear stress of an ice sheet: in defence of using stretched coordinates. J. Glaciol. 27(95), 39–56 (1981). https://doi.org/10.3189/S0022143000011217

    Article  Google Scholar 

  27. Iverson, N.R., Hanson, B., Hooke, R.L., Jansson, P.: Flow mechanism of glaciers on soft beds. Science (New York, NY) 267(5194), 80–1 (1995). https://doi.org/10.1126/science.267.5194.80

    Article  Google Scholar 

  28. Jiskoot, H.: Dynamics of glaciers. In: Singh, V.P., Singh, P., Haritashya, U.K. (eds.) Encyclopedia of Snow, Ice and Glaciers, pp. 245–256. Springer, Dordrecht (2011)

    Chapter  Google Scholar 

  29. Kaser, G., Fountain, A., Jansson, P. A manual for monitoring the mass balance of mountain glaciers. Unesco (2003). https://globalcryospherewatch.org/bestpractices/docs/UNESCO_manual_glaciers_2003.pdf

  30. Kleman, J., Glasser, N.F.: The subglacial thermal organisation (STO) of ice sheets. Q. Sci. Rev. 26(5–6), 585–597 (2007). https://doi.org/10.1016/J.QUASCIREV.2006.12.010

    Article  Google Scholar 

  31. Lal, D., Nishiizumi, K., Arnold, J.R.: In situ cosmogenic 3 H, 14 C, and 10 Be for determining the net accumulation and ablation rates of ice sheets. J. Geophys. Res. 92(B6), 4947 (1987). https://doi.org/10.1029/JB092iB06p04947

    Article  Google Scholar 

  32. Le Meur, E., Gagliardini, O., Zwinger, T., Ruokolainen, J.: Glacier flow modelling: a comparison of the Shallow Ice Approximation and the full-Stokes solution. C. R. Phys. 5(7), 709–722 (2004). https://doi.org/10.1016/J.CRHY.2004.10.001

    Article  Google Scholar 

  33. Lliboutry, L.: General theory of subglacial cavitation and sliding of temperate glaciers. J. Glaciol. 7(49), 21–58 (1968). https://doi.org/10.3189/S0022143000020396

    Article  Google Scholar 

  34. Martin, N., Monnier, J.: Inverse rheometry and basal properties inference for pseudoplastic geophysical flows. Eur. J. Mech. B Fluids 50, 110–126 (2015). https://doi.org/10.1016/j.euromechflu.2014.11.011

    Article  MathSciNet  MATH  Google Scholar 

  35. Monnier, J., des Boscs, P.E.E.: Inference of the bottom properties in shallow ice approximation models. Inverse Probl. (2017). https://doi.org/10.1088/1361-6420/aa7b92

    Article  MathSciNet  MATH  Google Scholar 

  36. Mosbeux, C., Gillet-Chaulet, F., Gagliardini, O.: Comparison of adjoint and nudging methods to initialise ice sheet model basal conditions. Geosci. Model Dev. 9(7), 2549–2562 (2016). https://doi.org/10.5194/gmd-9-2549-2016

    Article  Google Scholar 

  37. Ostrem, G.: Erts data in glaciology—an effort to monitor glacier mass balance from satellite imagery. J. Glaciol. 15(73), 403–415 (1975). https://doi.org/10.3189/S0022143000034511

    Article  Google Scholar 

  38. Pralong, M.R., Gudmundsson, G.H.: Bayesian estimation of basal conditions on rutford ice stream, west Antarctica, from surface data. J. Glaciol. 57(202), 315–324 (2011). https://doi.org/10.3189/002214311796406004

    Article  Google Scholar 

  39. Pritchard, H.D., Arthern, R.J., Vaughan, D.G., Edwards, L.A.: Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Nature 461(7266), 971–975 (2009). https://doi.org/10.1038/nature08471

    Article  Google Scholar 

  40. Raymond, M.J., Gudmundsson, G.H.: Estimating basal properties of ice streams from surface measurements: a non-linear Bayesian inverse approach applied to synthetic data. Cryosphere 3(2), 265–278 (2009). https://doi.org/10.5194/tc-3-265-2009

    Article  Google Scholar 

  41. Rowan, A.V., Quincey, D.J., Gibson, M.J., Glasser, N.F., Westoby, M.J., Irvine-Fynn, T.D., Porter, P.R., Hambrey, M.J.: The sustainability of water resources in High Mountain Asia in the context of recent and future glacier change. Geol. Soc. Spec. Publ. 462(1), 189–204 (2018). https://doi.org/10.1144/SP462.12

    Article  Google Scholar 

  42. Schwikowski, M., Schläppi, M., Santibañez, P., Rivera, A., Casassa, G.: Net accumulation rates derived from ice core stable isotope records of Pío XI glacier, Southern Patagonia Icefield. Cryosphere 7, 1635–1644 (2013). https://doi.org/10.5194/tc-7-1635-2013

    Article  Google Scholar 

  43. Shuman, C.A., Berthier, E., Scambos, T.A.: 2001–2009 elevation and mass losses in the Larsen A and B embayments, Antarctic Peninsula. J. Glaciol. 57(204), 737–754 (2011). https://doi.org/10.3189/002214311797409811

    Article  Google Scholar 

  44. Weertman, J.: On the sliding of glaciers. J. Glaciol. 3(21), 33–38 (1957). https://doi.org/10.3189/S0022143000024709

    Article  Google Scholar 

  45. Wilchinsky, A., Chugunov, V.: Modelling ice flow in various Glacier zones. J. Appl. Math. Mech. 65(3), 479–493 (2001). https://doi.org/10.1016/S0021-8928(01)00054-5

    Article  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the reviewer for their thoughtful comments and efforts towards improving our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Moyers-Gonzalez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McGeorge, E.K., Sellier, M., Moyers-Gonzalez, M. et al. Bedrock reconstruction from free surface data for unidirectional glacier flow with basal slip. Acta Mech 232, 305–322 (2021). https://doi.org/10.1007/s00707-020-02845-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02845-x

Navigation