Skip to content
BY 4.0 license Open Access Published by De Gruyter Open Access November 4, 2020

Mars: Life, Subglacial Oceans, Abiogenic Photosynthesis, Seasonal Increases and Replenishment of Atmospheric Oxygen

  • Rhawn G. Joseph EMAIL logo , Natalia S. Duxbury , Giora J. Kidron , Carl H. Gibson and Rudolph Schild
From the journal Open Astronomy

Abstract

The discovery and subsequent investigations of atmospheric oxygen on Mars are reviewed. Free oxygen is a biomarker produced by photosynthesizing organisms. Oxygen is reactive and on Mars may be destroyed in 10 years and is continually replenished. Diurnal and spring/summer increases in oxygen have been documented, and these variations parallel biologically induced fluctuations on Earth. Data from the Viking biological experiments also support active biology, though these results have been disputed. Although there is no conclusive proof of current or past life on Mars, organic matter has been detected and specimens resembling green algae / cyanobacteria, lichens, stromatolites, and open apertures and fenestrae for the venting of oxygen produced via photosynthesis have been observed. These life-like specimens include thousands of lichen-mushroom-shaped structures with thin stems, attached to rocks, topped by bulbous caps, and oriented skyward similar to photosynthesizing organisms. If these specimens are living, fossilized or abiogenic is unknown. If biological, they may be producing and replenishing atmospheric oxygen. Abiogenic processes might also contribute to oxygenation via sublimation and seasonal melting of subglacial water-ice deposits coupled with UV splitting of water molecules; a process of abiogenic photosynthesis that could have significantly depleted oceans of water and subsurface ice over the last 4.5 billion years.

References

Agee CB, Wilson NV, McCubbin FM, Ziegler K, Polyak VJ, Sharp ZD, et al. 2013. Unique meteorite from Early Amazonian Mars: Water-Rich Basaltic Breccia Northwest Africa 7034. Science. 339:780–785.10.1126/science.1228858Search in Google Scholar PubMed

Ainsworth EA. 2008. Rice production in a changing climate: a meta-analysis of responses to elevated carbon dioxide and elevated ozone concentration. Global Change Bio. 14(7):1642–1650. DOI:10.1111/j.1365-2486.2008.01594.x.10.1111/j.1365-2486.2008.01594.xSearch in Google Scholar

Alday J, Wilson CF, Irwin PGJ, Olsen KS, Baggio L, Montmessin F, et al. 2019. Oxygen isotopic ratios in Martian water vapour observed by ACS MIR on board the ExoMars Trace Gas Orbiter. A&A. 630:A91. DOI: https://doi.org/10.1051/0004-6361/201936234.10.1051/0004-6361/201936234Search in Google Scholar

Arnold NS, Conway SJ, Butcher FEG, Balme MR. 2019. Modeled Subglacial water flow routing supports localized intrusive heating as a possible cause of basal melting of Mars’ South Polar Ice Cap. JGR Planets. 24:2101–2116.10.1029/2019JE006061Search in Google Scholar

Arvidson RE, Squyres SW, Anderson RC, Bell III JF, Blaney D, Brückner J, et al. 2006. Overview of the Spirit Mars Exploration Rover mission to Gusev Crater: Landing site to Backstay Rock in the Columbia Hills. JGR. 111:E02S01.Search in Google Scholar

Ash RD, Knott SF, Turner G. 1996. A 4-Gyr shock age for a martian meteorite and implications for the cratering history of Mars. Nature. 380:57–59.10.1038/380057a0Search in Google Scholar

Barker DC, Bhattacharya JP. 2018. Sequence stratigraphy on an early wet Mars. Planet. Space Sci. 151:97-108.10.1016/j.pss.2017.11.012Search in Google Scholar

Barnhart CJ, Howard AD, Moore JM. 2009. Long-term precipitation and late-stage valley network formation: landform simulations of parana basin, Mars. JGR Planets. 114:E01003.10.1029/2008JE003122Search in Google Scholar

Barth CA. 1974. The atmosphere of Mars. Annu. Rev. Earth Planet. Sci. 2:333-367.10.1146/annurev.ea.02.050174.002001Search in Google Scholar

Bell III JF, Squyres SW, Arvidson RE, Arneson HM, Bass D, Calvin W, et al. 2004. Pancam Multispectral Imaging Results from the Opportunity Rover at Meridiani Planum. Science. 306:1703-1709.10.1126/science.1105245Search in Google Scholar PubMed

Belton MJS, Hunten DM. 1968. A search for O2 on Mars and Venus: a possible detection of oxygen in the atmosphere of Mars. ApJ. 153:963-974.10.1086/149722Search in Google Scholar

Bengtson S, Belivanova, V, Rasmussen, B, Whitehouse, M. 2009. The controversial “Cambrian” fossils of the Vindhyan are real but more than a billion years older. PNAS. 106(19):7729-7734.Search in Google Scholar

Bianciardi G, Miller JD, Straat PN, Levin GV. 2012. Complexity analysis of the Viking Labeled release Experiments. Int. J. of Aeronaut. Space Sci. 13(1):14-26.Search in Google Scholar

Bianciardi G, Rizzo V, Cantasano N. 2014. Opportunity Rover’s image analysis: Microbialites on Mars? Int. J. Aeronaut. Space Sci. 15(4):419–433.Search in Google Scholar

Bianciardi G, Rizzo V, Farias ME, Cantasano N. 2015. Microbialites at Gusev Craters, Mars. J. Astrobiol. Outreach. 3(5): 1000143. Biemann K, Oro J, Toulmin III P, Orgel LE, Nier AO, Anderson DM, et al. 1977. The search for organic substances and inorganic volatile compounds in the surface of Mars. JGR. 82:4641–4658.10.4172/2332-2519.1000143Search in Google Scholar

Bramson AM, Byrne S, Putzig NE, Sutton S, Plaut JJ, Brothers TC, et al. 2015. Widespread excess ice in Arcadia Planitia, Mars. Geophys. Res. Lett. 42:6566–6574. DOI:doi:10.1002/2015GL064844vSearch in Google Scholar

Buenning MK, Stott L, Yoshimura K, Berkelhammer M. 2012. The cause of the seasonal variation in the oxygen isotopic composition of precipitation along the western U.S. coast. JGR Atmospheres. 117:D18114. DOI: https://doi.org/10.1029/2012JD01805010.1029/2012JD018050Search in Google Scholar

Buick R. 2008. When did oxygenic photosynthesis evolve? Philos. Trans. R. Soc. Lond. B Biol. Sci. 363(1504):2731–2743.Search in Google Scholar

Burt DM, Knauth LP, Woletz KH. 2005. Origin of layered rocks, salts, And spherules at the opportunity landing site on Mars: no flowing or standing water evident or required. Proceedings of the 36th Annual Lunar and Planetary Science Conference, 2005 March 14-18. League City, Texas, US. Lunar and Planetary Science XXXVI. 2005. id.1527.Search in Google Scholar

Butler JN. 2018. Carbon dioxide equilibria and their applications. CRC Press.10.1201/9781315138770Search in Google Scholar

Byrne S. 2009. The Polar deposits of Mars. Annu. Rev. Earth Planet. Sci. 37:535–560.10.1146/annurev.earth.031208.100101Search in Google Scholar

Canfield DE. 2014. Oxygen: A Four billion year history. Princeton University Press.Search in Google Scholar

Carleton NP, Traub WA. 1972. Detection of molecular oxygen on Mars. Science. 177(4053):988-992. DOI: 10.1126/science.177.4053.988.10.1126/science.177.4053.988Search in Google Scholar

Carr M, Head J. 2019. Mars: Formation and fate of a frozen Hesperian Ocean. Icarus. 319:433–443.10.1016/j.icarus.2018.08.021Search in Google Scholar

Castro JFB, Mier, M-PZ, Martin-Torres J. 2015. Liquid water at Crater Gale, Mars. J. Astrobiol. Outreach. 3(3):1000131.Search in Google Scholar

Christensen PR, Wyatt MB, Glotch TD, Rogers AD, Anwar S, Arvidson RE, et al. 2004. Mineralogy at Meridiani Planum from the Mini-TES Experiment on the Opportunity Rover. Science. 306:1733-1739.10.1126/science.1104909Search in Google Scholar

Clayton RN, Mayeda T. 1996. Oxygen isotopes studies on achondrites. Geochim. Cosmochim. Acta. 60:19992017.10.1016/0016-7037(96)00074-9Search in Google Scholar

Clayton RN, Mayeda T. 1983. Oxygen isotopes in eucrites, shergottites, nakhlites, chassignites. Earth Planet Sci. Lett. 62:115-149.Search in Google Scholar

Clement SJ, Dulay MT, Gillette JS, Chillier XD, Mahajan TB, Zare RN. 1998. Evidence for the extraterrestrial origin of polycyclic aromatic hydrocarbons in the Martian meteorite ALH84001. Faraday Discuss. 109:417-436.10.1039/a709130cSearch in Google Scholar PubMed

Conway TJ, Tans PP, Waterman LS, Thoning KW, Kitzis DR, Masarie KA, et al. 1994. Evidence for interannual variability of the carbon cycle from the National Oceanic and Atmospheric Administration/Climate Monitoring and Diagnostics Laboratory global air sampling network. JGR. 99(D11):22831-22855. DOI: 10.1029/94JD01951.10.1029/94JD01951Search in Google Scholar

Conway SJ, Balme MR. 2014. Decameter thick remnant glacial ice deposits on Mars. Geophys. Res. Lett. 41(15):5402–5409. DOI: 10.1002/2014GL060314.10.1002/2014GL060314Search in Google Scholar

Dass RS. 2017. The high probability of life on Mars: A brief review of the evidence. Cosmology. Vol. 27. Available from: http://cosmology.com/LifeOnMarsReview.html.Search in Google Scholar

Davankov VA. 2020. Critical review on the origin of atmospheric oxygen: Where is organic matter? Planet. Space Sci. 190(1):105023.Search in Google Scholar

De la Torre Noetzel R, Miller B, Cubero AZ, Sancho, LG, Jordăo L, Rabbow E, et al. 2017. Survival of lichens on the ISS-II: ultra-structural and morphological changes of Circinaria gyrosa after space and Mars-like conditions. Proceedings of the EANA2017: the 17th European Astrobiology Conference, 2017 August 14-17, Aarhus, Denmark.Search in Google Scholar

De la Torre Noetzel R, Ortega García MV, Miller AZ, Bassy O, Granja C, Cubero B, et al. 2020. Lichen vitality after a space flight on board the EXPOSE-R2 facility outside the International Space Station: Results of the biology and Mars Experiment. Astrobiol. 20(5):583–600.10.1089/ast.2018.1959Search in Google Scholar PubMed

De Vera J-P. 2012. Lichens as survivors in space and on Mars. Fungal Ecol. 5:472–479.10.1016/j.funeco.2012.01.008Search in Google Scholar

De Vera J-P, Alawi M, Backhaus T, Baqué M, Billi D, Böttger U, et al. 2019. Limits of Life and the Habitability of Mars: The ESA Space Experiment BIOMEX on the ISS. Astrobiol. 19(2):145–157.10.1089/ast.2018.1897Search in Google Scholar PubMed PubMed Central

Dickeson ZI, Davis JM. 2020. Martian Oceans. A&G. 61:3.11–3.17. DOI: https://doi.org/10.1093/astrogeo/ataa03810.1093/astrogeo/ataa038Search in Google Scholar

DiGregorio B. E. 2002. Rock varnish as a habitat for extant life on Mars, Proceedings Volume 4495, Instruments, Methods, and Missions for Astrobiology IV. DOI: https://doi.org/10.1117/12.454750.10.1117/12.454750Search in Google Scholar

Dong CF, Lee Y. Ma YJ, Lingam M, Bougher S, Luhmann J, et al. 2018. Modeling Martian Atmospheric losses over time: Implications for exoplanetary climate evolution and habitability. Astrophys. J. Lett. 859:L14.10.3847/2041-8213/aac489Search in Google Scholar

Drake BG, Gonzalez-Meler MA, Long SP. 1997. More eflcient plants: A consequence of rising atmospheric CO2? Ann. Rev. Plant. Phys. Plant. Mol. Bio. 48(1):609–639. DOI: 10.1146/annurev.arplant.48.1.609.10.1146/annurev.arplant.48.1.609Search in Google Scholar PubMed

Dundas CM, Byrne S, McEwen AS. 2015. Modeling the development of Martian sublimation thermokarst landforms. Icarus. 262:154–169. DOI:10.1016/j.icarus.2015.07.033.10.1016/j.icarus.2015.07.033Search in Google Scholar

Dundas CM, Bramson AM, Ojha L, Wray JW, Mellon MT, Byrne S, et al. 2018. Exposed surface ice sheets in the Martian mid-latitudes. Science. 359:199–201. DOI: https://doi.org/10.1126/science.aao1619.10.1126/science.aao1619Search in Google Scholar PubMed

Dunham T. 1952. Spectroscopic observations of the planets at Mt. Wilson. Chapter 11. In: Kuiper GP. Editor. The atmospheres of the Earth and planets. Chicago: University of Chicago Press. p. 288–305.Search in Google Scholar

Duxbury NS. 2000. Estimating the Past Martian Ocean depth. Proceedings of EGS XXV General Assembly European, Nice, France. Available from: http://hdl.handle.net/2014/18748Search in Google Scholar

Duxbury NS, Zotikov LA, Nealson KH. 1999. A Non-basal-melting origin of the possible sub-polar water on Mars as derived from Lake Vostok modeling and MOLA data. Bull. Am. Astron. Soc. 31:47.01.Search in Google Scholar

Eigenbrode JL. Summons RE, Steele A, Freissinet C, Millan M, Navarro-González R, et al. 2018. Organic matter preserved in 3-billion-year-old mudstones at Gale crater, Mars. Science. 360:1096-1101.10.1126/science.aas9185Search in Google Scholar

Ehlmann BL, Mustard JF, Murchie SL, Bibring JP, Meunier A, Fraeman AA, et al. 2011. Subsurface water and clay mineral formation during the early history of Mars. Nature. 479:53–60.10.1038/nature10582Search in Google Scholar

Emsley J. 2001. Oxygen. In: Nature’s building blocks: An A-Z guide to the elements. Oxford (England): Oxford University Press. pp. 297–304.Search in Google Scholar

England C, Hrubes JD. 2004. Molecular oxygen mixing ratio and its seasonal variability in the Martian atmosphere. Paper presented at Workshop on Oxygen in the Terrestrial Planets. NASA Technical Report. Available from: https://www.lpi.usra.edu/meetings/otp2004/pdf/3009.pdf.Search in Google Scholar

Fairén AG, Dohm DM, Baker VR, de Pablo MA, Ruiz J, Ferris JC, et al. 2003. Episodic flood inundations of the northern plains of Mars. Icarus. 165:53-67.10.1016/S0019-1035(03)00144-1Search in Google Scholar

Fairén AG. 2020. Organic chemistry on a cool and wet young Mars. Nat. Astron. 4:446-447.10.1038/s41550-020-1098-zSearch in Google Scholar PubMed PubMed Central

Fairén AG. 2010. A cold and wet Mars. Icarus. 208(1):165-175.Search in Google Scholar

Farmer CB, Davies DW, Holland AL, Laporte DD, Doms PE. 1977. Mars-Water vapor observations from the Viking orbiters. JGR. 82:4225–4248.10.1029/JS082i028p04225Search in Google Scholar

Farquhar J, Thiemens MH, Jackson T. 1998. Atmosphere-surface Interactions on Mars: Delta17O measurements of carbonate from ALH 84001. Science. 280(5369):1580-1582.Search in Google Scholar

Farquhar J, Thiemens MH. 2000. Oxygen cycle of the Martian atmosphere-regolith system 17O of secondary phases in Nakhla and Lafayette. JGR. 105:11991–11998.10.1029/1999JE001194Search in Google Scholar

Fastook JL, Head JW, Marchant DR, Forget F, Madeleine J.-B. 2012. Early Mars climate near the Noachian-Hesperian boundary: Independent evidence for cold conditions from basal melting of the southpolar ice sheet (Dorsa Argentea Formation) and implications for valley network formation. Icarus. 219:25-40.10.1016/j.icarus.2012.02.013Search in Google Scholar

Fawdon P, Gupta S, Davis JM, Warner NH, Adler JB, Balme MR, et al. 2018. The Hypanis Valles delta: The last highstand of a sea on early Mars? Earth Planet Sci. Lett. 500:225–241.Search in Google Scholar

Fedorova AA, Montmessin F, Korablev O, Luginin M, Trokhimovskiy A, Belyaev DA, et al. 2020. Stormy water on Mars: The distribution and saturation of atmospheric water during the dusty season. Science. 367(6475):297–300.10.1126/science.aay9522Search in Google Scholar PubMed

Feldman WC. Boynton WV, Tokar RL, Prettyman TH, Gasnault O, Squyres SW. Elphic RC, Lawrence DJ, Lawson SL, Maurice S, et al. 2002. Global distribution of neutrons from Mars: Results from Mars Odyssey. Science. 297:75–78.10.1126/science.1073541Search in Google Scholar PubMed

Franz HB, McAdam AC, Ming DW, Freissinet C, Mahaffy PR, Eldridge DL, et al. 2017. Large sulfur isotope fractionations in martian sediments at Gale crater. Nat Geosci. 10:658–662.10.1038/ngeo3002Search in Google Scholar

Franz HB, Mahaffy PR, Webster CR, et al. 2020. Indigenous and exogenous organics and Surface-atmosphere cycling inferred from carbon and oxygen isotopes at Gale crater. Nat. Astron. 4:526–532.10.1038/s41550-019-0990-xSearch in Google Scholar

Freeman SE, Freeman LA, Hioroli G, Haas AF. 2018. Photosynthesis by marine algae produces sound, contributing to the daytime soundscape on coral reefs. Plos One. DOI: https://doi.org/10.1371/105journal.pone.0201766.Search in Google Scholar

Freissinet CDP, Glavin PR, Mahaff KE, Miller JL, Eigenbrode RE, Summons AE, et al. 2015. Organic molecules in the Sheepbed mud-stone, Gale Crater, Mars. J. Geophys. Res. Planets 120(3):495-514. DOI:10.1002/2014JE004737pmid:26690960.Search in Google Scholar

Frydenvang J, Gasda PJ, Hurowitz JA, Grotzinger JP, Wiens RC, Newsom HE, et al. 2017. Diagenetic silica enrichment and late-stage groundwater activity in Gale crater, Mars. Geophys. Res. Lett. 44:4716–4724. DOI: https://doi.org/10.1002/2017GL073323.10.1002/2017GL073323Search in Google Scholar

Glotch TD, Bandfield JL. 2006. Determination and interpretation of surface and atmospheric Miniature Thermal Emission SpecRtrometer spectralend-members at the Meridiani Planum landing site. J. Geo. Res. 111:E12S06. DOI: 10.1029/2005JE002671.10.1029/2005JE002671Search in Google Scholar

Graham LE, Graham JM, Wilcox LW, Cook ME. 2016. Algae. LJLM Press, Madison.Search in Google Scholar

Greenwood NN, Earnshaw A. Editors. 1997. Chemistry of the elements. Second Edition. Butterworth-Heinemann. p. 602.Search in Google Scholar

Grotzinger JP, Sumner DY, Kah LC, Stack K, Gupta S, Edgar L, et al. 2014. A habitable fluvio-lacustrine environment at Yellowknife Bay, Gale Crater, Mars. Science. 343(6169):1242777.Search in Google Scholar

Grotzinger JP, Gupta S, Malin MC, Rubin DM, Schieber J, Siebach K, et al. 2015. Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale Crater, Mars. Science. 350(6257):aac7575.10.1126/science.aac7575Search in Google Scholar

Guo Q, Strauss H, Kaufman AJ, Schröder S, Gutzmer J, Wing BA, et al. 2009. Reconstructing Earth’s surface oxidation across the Archean–Proterozoic transition. Geology. 37(5):399–402.10.1130/G25423A.1Search in Google Scholar

Grotzinger JP, Arvidson RE, Bell III JF, Calvind W, Clarke BC, Fike DA, et al. 2005. Stratigraphy and sedimentology of a dry to wet eolian depositional system, Burns Formation, Meridiani Planum, Mars. EPSL. 240(1):11-72.Search in Google Scholar

Haberle RM, Gómez-Elvira J, de la Torre Juárez, M, Harri AM, Hollingsworth JL, Kahanpää H, et al. 2014. Preliminary interpretation of the REMS pressure data from the first 100 sols of the MSL mission. JGR Planets. 119:440–453. DOI: https://doi.org/10.1002/2013JE004488.10.1002/2013JE004488Search in Google Scholar

Hahn BC, McLennan SM, Klein EC. 2011. Martian surface heat production and crustal heat flow from Mars Odyssey Gamma-Ray spectrometry. Geophys. Res. Lett. 38(14):L14203.10.1029/2011GL047435Search in Google Scholar

Halevy I, Fischer WW, Eiler JM. 2011. Carbonates in the Martian meteorite Allan Hills 84001 formed at 18±4 C in a near-surface aqueous environment, PNAS, 2011 October 11. 108(41):16895-16899. DOI: https://doi.org/10.1073/pnas.110944410810.1073/pnas.1109444108Search in Google Scholar

Hall DO, Rao JK. 1986. Photosynthesis (Studies in Biology), Hodder Arnold H&S. New York.Search in Google Scholar

Hartman H, McKay CP. 1995. Oxygenic photosynthesis and the oxidation state of Mars. Space Sci. Rev. 43:123-128.10.1016/0032-0633(94)00223-ESearch in Google Scholar

Harri AM, Genzer M, Kemppinen O, Kahanpää H, Gomez-Elvira J, Rodriguez-Manfredi JA, et al. 2014a. Pressure observations by the Curiosity rover: Initial results. JGR Planets. 119:82–92. DOI: https://doi.org/10.1002/2013JE004423.10.1002/2013JE004423Search in Google Scholar

Harri A-M., Genzer M, Kemppinen O, Gomez-Elvira J, Haberle R, Polkko J, et al. 2014b. Mars Science Laboratory relative humidity observations: Initial results. JGR Planets. 119:2132–2147.10.1002/2013JE004514Search in Google Scholar PubMed PubMed Central

Haskin LA, Wang A, Jolliff BL, McSween HY, Clark BC, Des Marais DJ, et al. 2005. Water alteration of rocks and soils on Mars at the Spirit rover site in Gusev crater. Nature. 436:66–69.10.1038/nature03640Search in Google Scholar PubMed

Hausrath EM, Ming DW, Rampe EB. 2018. Reactive transport and mass balance modeling of the Stimson sedimentary formation and altered fracture zones constrain diagenetic conditions at Gale crater, Mars. EPSL. 491:1–10.10.1016/j.epsl.2018.02.037Search in Google Scholar

Head JW, Hiesinger H, Ivanov MA, Kreslavsky MA, Pratt S, Thomson BJ. 1999. Possible ancient oceans on Mars: Evidence from Mars Orbiter Laser Altimeter Data. Science. 286(5447):2134-2137.10.1126/science.286.5447.2134Search in Google Scholar PubMed

Herkenhoff KE, Squyres SW, Arvidson R, Bass DS, Bell III JF, Bertelsen P, et al. 2004. Evidence from Opportunity’s Microscopic Imager for Water on Meridiani Planum. Science. 306:1727-1730.10.1126/science.1105286Search in Google Scholar PubMed

Hogancamp JV, Sutter B, Morris RV, Archer PD, Ming DW, Rampe EB, et al. 2018. Chlorate/Fe-bearing phase mixtures as a possible source of oxygen and chlorine detected by the sample analysis at Mars instrument in Gale Crater, Mars. JGR Planets. 123:2920–2938.10.1029/2018JE005691Search in Google Scholar

Holt JW, Safaeinili A, Plaut JJ, Head JW, Phillips RJ, Seu R, et al. 2008. Radar sounding evidence for buried glaciers in the southern mid-latitudes of Mars. Science 322, 1235–1238. DOI:10.1126/science.1164246pmid:19023078Search in Google Scholar

Hu Y, Rodier S, Xu K-M, Sun W, Huang J, Lin B, Zhai P, Josset D. 2010. Occurrence, liquid water content, and fraction of supercooled water clouds from combined CALIOP/IIR/MODIS. JGR Atmospheres. 115(D4):D00H34. DOI: https://doi.org/10.1029/2009JD012384.10.1029/2009JD012384Search in Google Scholar

Humayun M, Nemchin A, Zanda B, Hewins RH, Grange M, Kennedy A. et al. 2013. Origin and age of the earliest Martian crust from meteorite NWA 7533. Nature. 503:513–516.10.1038/nature12764Search in Google Scholar PubMed

Hurowitz JA, McLennan SM, Tosca NJ, Ming DW, Schröder C. 2006. In situ and experimental evidence for acidic weathering of rocks and soils on Mars. JGR. 111:E02S19.10.1029/2005JE002515Search in Google Scholar

Ivanov MA, Hiesinger H, Erkeling G, Reiss D. 2014. Mud volcanism and morphology of impact craters in Utopia Planitia on Mars: Evidence for the ancien ocean. Icarus. 228:121-140.10.1016/j.icarus.2013.09.018Search in Google Scholar

Jagoutz E, Sorowka A, Vogel JD, Wenke H. 1994. ALH 84001: Alien or progenitor of the SNC family? Meteoritics. 29:478-479.Search in Google Scholar

Jakosky BM, Brain D, Chafln M, Curry S, Deighan J, Grebowsky J, et al. 2018. Loss of the Martian atmosphere to space: Present-day loss rates determined from MAVEN observations and integrated loss through time. Icarus. 315:146–157.10.1016/j.icarus.2018.05.030Search in Google Scholar

Janhunen P. 2002. Are the northern plains of Mars a frozen ocean? JGR Planets. 107(E11):13-1-13-3.10.1029/2000JE001478Search in Google Scholar

Jaumann R, Tirsch D, Hauber E, Erkeling G, Hiesinger H, Le Deit L, et al. 2014. Water and Martian habitability: Results of an integrative study of water related processes on Mars in context with an interdisciplinary Helmholtz research alliance “Planetary Evolution and Life”. Planet. Space Sci. 2014. 98:128–145.10.1016/j.pss.2014.02.013Search in Google Scholar

Jorgensen BB, Revsbech NP, Blackburn TT, Cohen Y. 1979. Diurnal cycle of oxygen and sulfide microgradients and microbial photosynthesis in a cyanobacterial mat sediment. Appl. Env. Micro. 38(1):46-58.Search in Google Scholar

Joseph RG. 2016. A High Probability of life on Mars, the consensus of 70 experts in fungi, lichens, geomorphology, mineralogy. J. Cosmol. 25:1-25.Search in Google Scholar

Joseph RG, Dass RS, Rizzo V, Cantasano N, Bianciardi G. 2019. Evidence of Life on Mars? Journal of Astrobiology and Space Science Reviews. 1:40–81. Reprinted in: Beech M, Gordon R, Seckbach J. Editors. Astrobiology Perspectives on Life of the Universe, Wiley-Scrivener, Beverly, Massachusetts, USA.Search in Google Scholar

Joseph RG, Graham L, Budel B, Jung P, Kidron GJ, Latif K, et al. 2020a. Mars: Algae, Lichens, Fossils, Minerals, Microbial Mats and Stromatolites, in Gale Crater. J. Astrobiol. Space Sci. Res. 3(1):40–111. Reprinted in: Beech M, Gordon R, Seckbach J. Editors. Astrobiology Perspectives on Life of the Universe. Wiley-Scrivener, Beverly, Massachusetts (USA).10.37720/jassr.03082020Search in Google Scholar

Joseph RG, Armstrong R, Kidron G, Gibson CH, Schild R. 2020b. Life on Mars? Colonies of mushroom-shaped specimens in Eagle Crater. J. Astrobiol. Space Sci. Res. 5:88–126.Search in Google Scholar

Joseph RG, Planchon, O, Gibson, C, Schild, R. 2020c. Seeding the Solar System with Life: Mars, Venus, Earth, Moon, Protoplanets. Open Astron. 29:124-157. DOI: 10.1515/astro-2020-0019.10.1515/astro-2020-0019Search in Google Scholar

Joseph RG, Planchon O, Duxbury NS, Latif K, Kidron GJ, Consorti L, et al. 2020d. Oceans, lakes and stromatolites on Mars. Adv. Astron. 2020:6959532. DOI: https://doi.org/10.1155/2020/6959532.10.1155/2020/6959532Search in Google Scholar

Kahn R. 1984. The spatial and seasonal distribution of Martian clouds and some meteorological implications. JGR: Space Physics. 89:6671-6688.10.1029/JA089iA08p06671Search in Google Scholar

Kaplan LD, Munch G, Spinrad, H. Analysis of the spectrum of Mars. 1964. ApJ. 139(1):1-15.Search in Google Scholar

Keeling RF, Shertz SR. 1992. Seasonal and interannual variations in atmospheric oxygen and implications for the global carbon cycle. Nature. 356:723–727.Search in Google Scholar

Keeling CD, Chin JFS, Whorf TP. 1996. Increased activity of northern vegetation inferred from atmospheric CO2 measurements. Nature. 382:146–149. DOI: 10.1038/382146a0.10.1038/382146a0Search in Google Scholar

Kieffer HH, Jakosky BM, Snyder CW. 1992. The planet Mars: From antiquity to present, in Mars. In: Kieffer HH, Jakosky B, Snyder C. Editors. Tucson (Arizona, USA): University of Arizona Press, p. 1–33.Search in Google Scholar

Kim H, Takayama K, Hirose N, Onitsuka G, Yoshida T, Yanagi T. 2019. Biological modulation in the seasonal variation of dissolved oxygen concentration in the upper Japan Sea. J Oceanogr. 75:257-271.10.1007/s10872-018-0497-6Search in Google Scholar

Klein HP. 1978. Viking biological experiments on Mars. Icarus. 34(3):666–674. DOI: https://doi.org/10.1016/0019-1035(78)90053-2.10.1016/0019-1035(78)90053-2Search in Google Scholar

Klingelhöfer G. 2004. Jarosite and Hematite at Meridiani Planum from Opportunity’s Mössbauer Spectrometer. Science. 306:1740-1745.10.1126/science.1104653Search in Google Scholar PubMed

Knauth L, Burt D, Wohletz K. 2005. Impact origin of sediments at the Opportunity landing site on Mars. Nature. 438:1123–1128.10.1038/nature04383Search in Google Scholar PubMed

Kolb CJA, Martín-Fernández R, Lammer H. 2006. The chemical variability at the surface of Mars: Implication for sediment formation and rock weathering. Icarus, 183:10–29. DOI:10.1016/j.icarus.2006.01.020.10.1016/j.icarus.2006.01.020Search in Google Scholar

Korablev OI, Baraux, J-L, Dubois J-P. 2001. Occultation of stars in the UV: Study of the atmosphere of Mars. JGR. 106:7597–7610.10.1029/2000JE001298Search in Google Scholar

Krasnopolsky V. A. 2010. Solar activity variations of thermospheric temperatures on Mars and a problem of CO in the lower atmosphere. Icarus. 207(2):638–647. DOI: https://doi.org/10.1016/j.icarus.2009.12.03610.1016/j.icarus.2009.12.036Search in Google Scholar

Krupa TA. 2017. Flowing water with a photosynthetic life form in Gusav Crater on Mars. Proceedings of the 48th Lunar and Planetary Science Conference. 2017 March 20-24, The Woodlands, Texas. LPI Contribution No. 1964, id. 2711.Search in Google Scholar

Lane N. 2002. Oxygen: The molecule that made the world. Oxford University Press.Search in Google Scholar

Lanse J, Noblet A, Szopa C, Navarro-González R, Cabane M, Poch O, et al. 2016. Oxidants at the surface of Mars: A review in light of recent exploration results. Astrobiology. 16(12):977-996. DOI: https://doi.org/10.1089/ast.2016.150210.1089/ast.2016.1502Search in Google Scholar PubMed

Lanza NL, Wiens RC, Arvidson RE, Clark BC, Woodward W, Fischer WW, et al. 2016. Oxidation of manganese in an ancient aquifer, Kimberley formation, Gale crater, Mars. GRL. 43:7398-7407.10.1002/2016GL069109Search in Google Scholar

Lauro SE, Pettinelli E, Caprarelli G, Guallini L, Rossi AP, Mattei E, et al. 2020. Multiple subglacial water bodies below the South Pole of Mars unveiled by new MARSIS data. Nat. Astron. DOI: https://doi.org/10.1038/s41550-020-1200-6.10.1038/s41550-020-1200-6Search in Google Scholar

Lefčvre F, Krasnopolsky VA. 2017. Atmospheric photochemistry. In: Haberle R. Editor. The atmosphere and climate of Mars. Cambridge: Cambridge University Press. pp. 405–432. DOI: https://doi.org/10.1017/9781139060172.10.1017/9781139060172Search in Google Scholar

Leshin LA, Mahaffy PR, Webster CR, Cabane M, Coll P, Conrad PG, et al. 2013. Volatile, isotope, and organic analysis of Martian fines with the Mars Curiosity Rover. Science, 341(6153):1238937.10.1126/science.1238937Search in Google Scholar PubMed

Levin G, Straat PA. 1976. Viking labeled release biology experiment: Interim results. Science. 194:1322–1329.10.1126/science.194.4271.1322Search in Google Scholar

Levin GV, Straat PA. 1977. Life on Mars? The Viking labeled release experiment. Biosyst. 9(2–3):165–174.10.1016/0303-2647(77)90026-0Search in Google Scholar

Levin GV, Straat P.A. 1981. A search for a nonbiological explanation of the Viking Labeled Release life detection experiment. Icarus. 45:494–516.10.1016/0019-1035(81)90048-8Search in Google Scholar

Levin GV, Straat PA. 2016. The case for extant life on Mars and its possible detection by the Viking Labeled Release Experiment. Astrobiology. 16(10):798–810.10.1089/ast.2015.1464Search in Google Scholar

Levin GV, Straat PA, Benton WD. 1978. Color and feature changes at Mars Viking Lander Site. J. Theor. Biol. 75:381–390.10.1016/0022-5193(78)90342-9Search in Google Scholar

Lin CS, Chou TL, Wu JT. 2013. Biodiversity of soil algae in the farmlands of mid-Taiwan. Bot Stud. 54:41.10.1186/1999-3110-54-41Search in Google Scholar PubMed PubMed Central

Lin CS, Wu JT. 2014. Environmental factors affecting the diversity and abundance of soil photomicrobes in arid lands of subtropical Taiwan. Geomicrobiol. J. 31(4):350–359.Search in Google Scholar

Livengood TA, Kostiuk T, Hewagama T, Smith RL, Fast KE, Annen JN, et al. 2020. Evidence for diurnally varying enrichment of heavy oxygen in Mars atmosphere. Icarus. 335:113387-113392.10.1016/j.icarus.2019.113387Search in Google Scholar

Long SP, Ainsworth EA, Leakey AD, Nösberger J, Ort DR. 2006. Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations. Science. 312(5782):1918-1921. DOI:10.1126/science.111472210.1126/science.1114722Search in Google Scholar PubMed

Luger R, Barnes R. 2015. Extreme water loss and abiotic O2 buildup on planets throughout the habitable zones of M dwarfs, Astro-biology. 15:14. DOI: https://doi.org/10.1089/ast.2014.1231.10.1089/ast.2014.1231Search in Google Scholar PubMed PubMed Central

Macey MC, Fox-Powell M, Ramkissoon NK, Stephens BP, Barton T, Schwenzer SP, et al. 2020. The identification of sulfide oxidation as a potential metabolism driving primary production on late Noachian Mars. Sci Rep 10:10941. DOI: https://doi.org/10.1038/s41598020-67815-8Search in Google Scholar

Martínez GM, Newman CN, De Vicente-Retortillo A, Fischer E, Renno NO, Richardson MI, et al. 2017. The modern near-surface Martian climate: A Review of In-situ Meteorological Data from Viking to Curiosity. Space Sci. Rev. 212:295–338. DOI: https://doi.org/10.1007/s11214-017-0360-x10.1007/s11214-017-0360-xSearch in Google Scholar

Martín-Torres FJ, Zorzano MP, Valentín-Serrano P, Harri AM, Genzer M, Kemppinen O, et al. 2015. Transient liquid water and water activity at Gale crater on Mars. Nature. 8:357–361.Search in Google Scholar

Metting B. 1981. The systematics and ecology of soil algae. Bot. Rev. 47(110):195–312. DOI: https://doi.org/10.1007/BF02868854.10.1007/BF02868854Search in Google Scholar

McElroy MB, Kong TK, Yung YL, 2012. Photochemistry and evolution of Mars’ atmosphere: A Viking perspective. JGR. 82(28):4379-4388. DOI: https://doi.org/10.1029/JS082i028p04379.10.1029/JS082i028p04379Search in Google Scholar

McKay CP. 2010. An origin of life on Mars. Cold Spring Harbor Perspectives in Biology. DOI: 10.1101/cshperspect.a003509.10.1101/cshperspect.a003509Search in Google Scholar PubMed PubMed Central

McKay DS, Gibson EK, Thomas-Keprta KL, Vali H, Romanek CS, Clemett SJ, et al. 1996. Search for past life on Mars: possible relic biogenic activity in martian meteorite ALH84001. Science. 273:924–930.10.1126/science.273.5277.924Search in Google Scholar PubMed

McKay DS, Thomas-Keprta KL, Clemett SJ, Gibson Jr EK, Spencer L, Wentworth SJ. 2009. Life on Mars: new evidence from martian meteorites. Instr. Meth. Astrobio. Planet. Missions. 7441:744102.10.1117/12.832317Search in Google Scholar

McLennan SM, Grotzinger JP, 2008. The sedimentary rock cycle of Mars. In: The martian surface – Composition, mineralogy, and physical properties. Jim Bell III J. Editor. Cambridge University Press. 541 p.10.1017/CBO9780511536076.025Search in Google Scholar

Meteoritical Bulletin Database. 2020.Search in Google Scholar

Ming DW, Archer PD, Glavin DP, Eigenbrode JL, Franz HB, Sutter B, et al. 2014. Volatile and organic compostions of sedimentary rocks in Yellowknife Bay, Gale crater, Mars. Science Express. 343(6169): 1245267. DOI: https://doi.org/10.1126/science.1245267.10.1126/science.1245267Search in Google Scholar PubMed

Montgomery W, Jaramillo EA, Royle SH, Kounaves SP, Schulze-Makuch D, Sephton MA. 2019. Effects of oxygen-containing salts on the detection of organic biomarkers on Mars and in terrestrial analog soils. Astrobiology. 19(6):711-721. DOI: http://doi.org/10.1089/ast.2018.188810.1089/ast.2018.1888Search in Google Scholar PubMed

Moores JE, Lemmon MT, Rafkin SCR, Francis R, Pla-Garcia J, De La Torre Juárez M, et al. 2015. Atmospheric movies acquired at the Mars Science Laboratory landing site: Cloud morphology, frequency and significance to the Gale Crater water cycle and Phoenix mission results. Adv. Space Res. 55:2217–2238.10.1016/j.asr.2015.02.007Search in Google Scholar

Morris RV, Klingelhöfer G, Schröder C, Rodionov DS, Yen A, Ming DW, et al. 2006a. Mössbauer mineralogy of rock, soil, and dust at Gusev crater, Mars: Spirit’s journey through weakly altered olivine basalt on the plains and pervasively altered basalt in the Columbia Hills. JGR. 111:E02S13.Search in Google Scholar

Morris RV, Klingelhöfer G, Schröder C, Rodionov DS, Yen A, Ming DW, et al. 2006b. Mössbauer mineralogy of rock, soil, and dust at Meridiani Planum, Mars: Opportunity’s journey across sulfate-rich outcrop, basaltic sand and dust, and hematite lag deposits. JGR. 111:E12S15.Search in Google Scholar

Navarro-González RE, Vargas J, de la Rosa AC, Raga C, McKay CP. 2010. Reanalysis of the Viking results suggests perchlorate and organics at midlatitudes on Mars. JGR Planets. 115(E12):E12010. DOI:10.1029/2010JE003599.10.1029/2010JE003599Search in Google Scholar

Noffke N. 2015. Ancient Sedimentary Structures in the < 3.7b Ga Gillespie Lake Member, Mars, That compare in macroscopic morphology, spatial associations, and temporal succession with terrestrial microbialites. Astrobiology. 15(2):1–24.10.1089/ast.2014.1218Search in Google Scholar PubMed

Norlund LI, Baron C, Warren LA. 2010. Jarosite formation by an AMD sulphide-oxidizing environmental enrichment: Implications for biomarkers on Mars. Chemical. Geo. 275:235-242.10.1016/j.chemgeo.2010.05.014Search in Google Scholar

Nyquist LE, Bansal BM, Wiesmann H, Shih C-Y. 1995. “Martians” young and old: Zagami and ALH84001. Proceedings of the Lunar Planet Science XXVI. 26:1065–1066.Search in Google Scholar

Nyquist LE, Bogard D, Shih C-Y, Greshake A, Stöffler D, Eugster O. 2001. Ages and geologic histories of martian meteorites. In: Kallenbach R, Geiss J, Hartmann WK. Editors. Chronology and Evolution of Mars. Springer, New York, p. 105–164.Search in Google Scholar

Orosei R, Ding C, Fa W, Giannopoulos A, Hérique A, Kofman W, et al. 2020. The global search for liquid water on Mars from orbit: Current and future perspectives. Life. 10:120.10.3390/life10080120Search in Google Scholar PubMed PubMed Central

Orosei R. Lauro SE, Pettinelli E, Cicchetti A, Coradini M, Cosciotti B, et al. 2018. Radar evidence of subglacial liquid water on Mars. Science. 361:490-493.10.1126/science.aar7268Search in Google Scholar PubMed

Oyama VI, Berdahl BJ. 1977. The Viking Gas Exchange experiment results from Chryse and Utopia surface samples. JGR. 82(28):4669–4676.10.1029/JS082i028p04669Search in Google Scholar

Parker TJ, Schneeberger DM, Pieri DC, Saunders RS. 1986. Geomorphic evidence for ancient seas on Mars. In: Symposium on Mars: Evolution of its Climate and Atmosphere. Lunar & Planetary Institute. 82 p.Search in Google Scholar

Parnell J, McMahon S, Boyce A. 2018. Demonstrating deep biosphere activity in the geological record of lake sediments, on Earth and Mars. Int. J Astrobio. 17:380–385.10.1017/S1473550417000337Search in Google Scholar

Picardi G, Plaut JJ, Biccari D, Bombaci O, Calabrese D, Cartacci M, et al. 2005. Radar soundings of the subsurface of Mars. Science. 310:1925-1928.10.1126/science.1122165Search in Google Scholar PubMed

Plesa A-C, Grott M, Tosi N, Breuer D, Spohn T, Wieczorek MA. 2016. How large are present-day heat flux variations across the surface of Mars? JGR Planets. 121(12):2386-2403.Search in Google Scholar

Pope EC, Bird SK, Rosing MT. 2012. Isotope composition and volume of Earth’s early oceans. PNAS. 109(12):4371-4376. DOI:10.1073/pnas.111570510910.1073/pnas.1115705109Search in Google Scholar PubMed PubMed Central

Pruppacher H, Klett J. 2010. Microstructure of atmospheric clouds and precipitation. In: Microphysics of Clouds and Precipitation. Atmospheric and Oceanographic Sciences Library, Vol 18. Dordrecht: Springer.10.1007/978-0-306-48100-0Search in Google Scholar

Putzig NE, Phillips RJ, Campbell BA, Mellon MT, Holt JW, Brothers TC. 2014. SHARAD soundings and surface roughness at past, present, and proposed landing sites on Mars: Reflections at Phoenix may be attributable to deep ground ice. JGR Planets. 119(8):1936-1949. DOI: 10.1002/2014JE00464.Search in Google Scholar

Quinn RC, Martucci HFH, Miller SR, Bryson CE, Grunthaner FJ, Grunthaner PJ. 2013. Perchlorate radiolysis on Mars and the origin of martian soil reactivity. Astrobiology. 13(6): 515–520. DOI: 10.1089/ast.2013.0999.10.1089/ast.2013.0999Search in Google Scholar PubMed PubMed Central

Rahmati A, Larson DE, Cravens TE, Lillis RJ, Dunn PA, Halekas JS, et al. 2015. MAVEN insights into oxygen pickup ions at Mars. Geophys. Res. Lett. 42:8870–8876.10.1002/2015GL065262Search in Google Scholar

Ramirez RM, Craddock RA, Usui T. 2020. Climate simulations of early Mars with estimated precipitation, runoff, and erosion rates. JGR Planets. 125(3): e2019JE006160. DOI: https://doi.org/10.1029/2019JE006160.10.1029/2019JE006160Search in Google Scholar

Rampe EB, Blake DF, Bristow TF, Ming DW, Vaniman DT, Morris RV, et al. 2020. Mineralogy and geochemistry of sedimentary rocks and eolian sediments in Gale crater, Mars: A review after six Earth years of exploration with Curiosity. Geochemistry. 80(2):125605.10.1016/j.chemer.2020.125605Search in Google Scholar

Rampe E, Ming, D, Blake, D, Bristow, T, Chipera, S, Grotzinger, J, et al. 2017. Mineralogy of an ancient lacustrine mudstone succession from the Murray formation, Gale Crater, Mars. Earth Planet. Sci. Lett. 471:172–185. DOI: https://doi.org/10.1016/j.epsl.2017.04.021vSearch in Google Scholar

Read PL, Lewis SR. 2004. The Martian Climate Revisited-Atmosphere and Environment of a desert planet, Berlin: Springer-Verlag. 326 p.Search in Google Scholar

Retallack GJ. 2014. Paleosols and paleoenvironments of early Mars. Geology. 42:755-758.10.1130/G35912.1Search in Google Scholar

Richardson MI, Mischna MA. 2005. Long-term evolution of transient liquid water on Mars. JGR. 110(E3):E03003. 11510.1029/2004JE002367Search in Google Scholar

Richter SL, Johnson AH, Dranoff MM, LePage BA, Williams CJ. 2008. Oxygen isotope ratios in fossil wood cellulose: Isotopic composition of Eocene- to Holocene-aged cellulose. Geochim. Cosmochim Acta. 72:2744–2753.10.1016/j.gca.2008.01.031Search in Google Scholar

Rizzo V. 2020. Why should geological criteria used on Earthnot be valid also for Mars? Evidence of possiblemicrobialites and algae in extinct Martian lakeslakes. Int. J. Astrobiol. 19(3):283-294.10.1017/S1473550420000026Search in Google Scholar

Rizzo V, Cantasano, N. 2009. Possible organosedimentary structures on Mars. Int. J. Astrobiol. 8(4): 267-280.10.1017/S1473550409990152Search in Google Scholar

Rizzo V, Cantasano N. 2016. Structural parallels between terrestrial microbialites and Martian sediments: are all cases of ‘Pareidolia’? Int. J. Astrobiol. 16(4):297–316.10.1017/S1473550416000355Search in Google Scholar

Romanek CS, Perry EC, Treiman AH, Socki RA, Jones JH, Gibson EK Jr. 1998. Oxygen isotopic record of silicate alteration in the SNC meteorite Lafayette. Meteorit. Planet. Sci. 33:775-784.10.1111/j.1945-5100.1998.tb01683.xSearch in Google Scholar

Ruff SW, Farmer JD. 2016. Silica deposits on Mars with features resemblinghot spring biosignatures at El Tatio in Chile. Nat. Commun. 7:13554.10.1038/ncomms13554Search in Google Scholar PubMed PubMed Central

Ruff SW, Niles PB, Alfano F, Clarke AB. 2014. Evidence for a Noachian-aged ephemeral lake in Gusev crater, Mars. Geology. 42(4):359–362. DOI: https://doi.org/10.1130/G35508.110.1130/G35508.1Search in Google Scholar

Sallstedt T, Bengtson S, Broman C, Crill PM, Canfield DE. 2018. Evidence of oxygenic phototrophy in ancient phosphatic stromatolites from the Paleoproterozoic Vindhyan and Aravalli Supergroups, India. Geobiology. 16(2):139–159.10.1111/gbi.12274Search in Google Scholar PubMed

Sanchez-Baracaldo P, Cardona T. 2019. On the origin of oxygenic photosynthesis and Cyanobacteria. New Phytol. 225(4):1440-1446.Search in Google Scholar

Sawa Y, Machida T, Matsueda H. 2012. Aircraft observation of the seasonal variation in the transport of CO2 in the upper atmosphere. JGR Atmosheres. 117(D):D05305.10.1029/2011JD016933Search in Google Scholar

Shaheen Niles PB, Chong K, Corrigan C, Thiemens MH. 2015. Carbonate formation events in ALH 84001 trace the evolution of the Martian atmosphere. PNAS. 112(2):336-341.Search in Google Scholar

Smith MD, Pearl JC, Conrath BJ, Christensen PR. 2001. One Martian year of atmospheric observations by the Thermal Emission Spectrometer. Geophys. Res. Lett. 28:4263-4266. DOI:10.1029/2001GL013608.10.1029/2001GL013608Search in Google Scholar

Smith MD. 2004. Interannual variability in TES atmospheric observations of Mars during 1999–2003. Icarus. 167:148-165.10.1016/j.icarus.2003.09.010Search in Google Scholar

Sori MM, Bramson AM. 2019. Water on Mars, with a grain of salt: Local heat anomalies are required for basal melting of ice at the South Pole Today. Geophys. Res. Lett. 46:1222–1231.10.1029/2018GL080985Search in Google Scholar

Squyres SW, Knoll AH. 2006. Sedimentary rocks at Meridiani Planum: Origin, diagenesis, and implications for life on Mars. Earth Planet. Sci. Lett. 240:1–10.Search in Google Scholar

Squyres SW, Grotzinger JP, Arvidson RE, Bell III JF, Calvin W, Christensen PR, et al. 2004. In Situ Evidence for an ancien aqueous environment at Meridiani Planum, Mars. Science. 306(5702):1709-1714.Search in Google Scholar

Steele LJ, Balme MR, Lewis SR, Spiga A. 2017. The water cycle and regolith-atmosphere interaction at Gale crater. Mars. Icarus. 289:56-79.10.1016/j.icarus.2017.02.010Search in Google Scholar

Steele A, McCubbin FM, Fries M. 2012. A reduced organic carbon component in martian basalts. Science. 337:212–215.10.1126/science.1220715Search in Google Scholar PubMed

Strickland D, Stewart AI, Barth CA, Hord CW, Lane AL. 1973. Mariner 9 Ultraviolet Spectrometer Experiment: Mars atomic oxygen 1304-A emission. JGR. 78(22):4547-4559.10.1029/JA078i022p04547Search in Google Scholar

Stuurman CM, Osinski GR, Holt JW, Levy JS, Brothers TC, Kerrigan M, Campbell BA. 2016. SHARAD detection and characterization of subsurface water ice deposits in Utopia Planitia, Mars. Geophys. Res. Lett. 43:9484-9491.10.1002/2016GL070138Search in Google Scholar

Sutter B, Heil E, Morris R, Archer P, Ming D, Niles P, et al. 2015. The investigation of perchlorate/iron phase mixtures as a possible source of oxygen detected by the sample analysis at Mars (SAM) instrument in Gale Crater, Mars. In: 46th Lunar and Planetary Science Conference. The Woodlands, Texas, USA. id. 2137.Search in Google Scholar

Sutter B, McAdam AC, Mahaffy PR, Ming DW, Edgett KS, Rampe EB, et al. 2017. Evolved gas analyses of sedimentary rocks and eolian sediment in Gale Crater, Mars: results of the Curiosity rover’s sample analysis at Mars instrument from Yellowknife Bay to the Namib Dune. JGR Planets. 122(12):2574-2609.10.1002/2016JE005225Search in Google Scholar

Szopa C, Freissinet C, Glavin DP, Millan M, Buch A, Franz HB, et al. 2020. First Detections of dichlorobenzene isomers and trichloromethylpropane from organic matter indigenous to Mars mudstone in Gale Crater, Mars: Results from the Sample analysis at Mars instrument onboard the Curiosity Rover. Astrobiology. 20:292–306.10.1089/ast.2018.1908Search in Google Scholar PubMed

ten Kate IL. 2010. Organics on Mars? Astrobiology. 10:589–603.Search in Google Scholar

Ten Veldhuis M, Ananyev G, Dismukes GC. 2020. Symbiosis extended: exchange of photosynthetic O2 and fungal-respired CO2 mutually power metabolism of lichen symbionts. Photo-synth. Res. 143:287–299.10.1007/s11120-019-00702-0Search in Google Scholar PubMed PubMed Central

Thomas-Keprta KL, Clemett SJ, McKay DS, Gibson EK, Wentworth SJ. 2009. Origins of magnetite nanocrystals in Martian meteorite ALH84001. Geochim. Cosmochim. Acta. 73:6631–6677.10.1016/j.gca.2009.05.064Search in Google Scholar

Tillman JE, Johnson NC, Guttorp P, Percival DB. 1993. The Martian annual atmospheric pressure cycle: Years without great dust storms. JGR Planets. 84(10):963–910,971.Search in Google Scholar

Todd Clancy R, Smith MD, Lefčvre F, McConnochie TH, Sandor BJ, Wolff MJ, et al. 2017. Vertical profiles of Mars 1.27 μm O2 day-glow from MRO CRISM limb spectra: Seasonal/global behaviors, comparisons to LMD-GCM simulations, and a global definition for Mars water vapor profiles. Icarus. 293:132–156.Search in Google Scholar

Tosca NJ, Scott M, McLennan M, Dyar D, Sklute EC, Michel FM. 2008. Fe oxidation processes at Meridiani Planum and implications for secondary Fe mineralogy on Mars. JGR Planets. 113(E5):E05005.10.1029/2007JE003019Search in Google Scholar

Trainer MG, Wong MH, McConnochie TH, Franz HB, Atreya SK, Conrad PG, et al. 2019. Seasonal Variations in Atmospheric Composition as Measured in Gale Crater, Mars. JGR Planets. 124:3000–3024.10.1029/2019JE006175Search in Google Scholar

Treiman AH, Bish D, Vaniman D, Chipera S, Blake D, Ming D, et al. 2016. Mineralogy, provenance, and diagenesis of a potassic basaltic sandstone on Mars: CheMin X-ray diffraction of the Windjana sample (Kimberley area, Gale Crater. JGR Planets. 121:75-106.10.1002/2015JE004932Search in Google Scholar PubMed PubMed Central

Treiman AH, Essen EJ. 2011. Chemical composition of magnetite in Martian meteorite ALH 84001: Revised appraisal from thermo-chemistry of phases in Fe-Mg-C-O. Geochim. Cosmochim. Acta. 75:5324–5335.10.1016/j.gca.2011.06.038Search in Google Scholar

Vago JL, Westall F, Pasteur Instrument Teams, Landing Site Selection Working Group, and Other Contributors. 2017. Habitability on Early Mars and the search for biosignatures with the Exo-Mars Rover. In: Vago JL. Editor. Special Collection of Papers: ExoMars Rover Mission. Astrobiology. 17(6–7):471–510.Search in Google Scholar

Valeille A, Combi MR, Tenishev V, Bougher SW, Nagy AF. 2010. A study of suprathermal oxygen atoms in Mars upper thermo-sphere and exosphere over the range of limiting conditions. Icarus. 206:18–27.10.1016/j.icarus.2008.08.018Search in Google Scholar

Villanueva GL, Mumma MJ, Novak RE, Käufl HU, Hartogh P, Encrenaz T, Tokunaga A, et al. 2015. Strong water isotopic anomalies in the martian atmosphere: Probing current and ancien reservoirs. Science. 348(6231):218–221.10.1126/science.aaa3630Search in Google Scholar

Vinyard DJ, Ananyev GM, Dismukes GC. 2018. Desiccation tolerant lichens facilitate in vivo H/D isotope effect measurements in oxygenic photosynthesis. Biochim. Biophys. Acta (BBA) – Bioenergetics. 1859(10):1039-1044.Search in Google Scholar

Wadhwa M, Lugmair GW. 1996. The formation age of carbonates in ALH 84001. Meteoritics. 31:A145.Search in Google Scholar

Wall SD. 1981. Analysis of condensates formed at the Viking 2 lander site-The first winter. Icarus. 47:173–183.10.1016/0019-1035(81)90165-2Search in Google Scholar

Wang A, Haskin LA, Squyres SW, Jolliff BL, Crumpler L, Gellert R, et al. 2006. Sulfate deposition in subsurface regolith in Gusev Crater, Mars. JGR. 11(E2):E02S17.Search in Google Scholar

Whiteway JA, Komguem L, Dickinson C, Cook C, Illnicki M, Seabrook J, et al. 2009. Mars water-ice clouds and precipitation. Science. 325(5936):68–70.Search in Google Scholar

Woodworth-Lynas C, Guigné JY. 2003. Ice keel scour marks on Mars: Evidence for floating and grounding ice floes in Kasei Valles. Oceanography. 16(4):90-97.10.5670/oceanog.2003.15Search in Google Scholar

Wordsworth R, Pierrehumbert R. 2014. Abiotic oxygen-dominated atmospheres on terrestrial habitable zone planets. Astrophys. J. Lett. 785(2):L20.10.1088/2041-8205/785/2/L20Search in Google Scholar

Wright P, Grady MM, Pillinger CT. 1989. Organic materials in a martian meteorite. Nature. 340:146-157.10.1038/340220a0Search in Google Scholar

Yen AS, Ming DW, Vaniman DT, Gellert R, Blake DF, Morris RV, et al. 2017. Multiple stages of aqueous alteration along fractures in mudstone and sandstone strata in Gale crater, Mars. Earth Planet. Sci. Lett. 471:186–198.10.1016/j.epsl.2017.04.033Search in Google Scholar

Zahnle KJ, Catling, DC,.Claire MC. 2013. The rise of oxygen and the hydrogen hourglass. Chem. Geol. 362(20):26-34.Search in Google Scholar

Zent AP, McKay CP. 1994. The chemical reactivity of the martian soil and implications for future missions. Icarus. 108:146-157.10.1006/icar.1994.1047Search in Google Scholar

Zhang MGH, Luhmann JG, Bougher SW, Nagy AF. 2012. The ancient oxygen exosphere of Mars: Implications for atmosphere evolution. JGR Planets. 98(E6):10915-10923. DOI: 10915-10923.10.1029/93JE00231Search in Google Scholar

Zhang X, Filser J. 2017. Suitability of contact-free oxygen optical microsensors for measuring respiration and photo-synthesis in green algae. Front. Environ. Sci. 5:91. DOI:10.3389/fenvs.2017.00091.10.3389/fenvs.2017.00091Search in Google Scholar

Received: 2020-09-03
Accepted: 2020-10-12
Published Online: 2020-11-04

© 2018 Rhawn G. Joseph et al., published by De Gruyter

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 26.4.2024 from https://www.degruyter.com/document/doi/10.1515/astro-2020-0020/html
Scroll to top button