Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Hydration-induced reversible deformation of biological materials

Abstract

The influx and efflux of water in biological structures actuates reversible deformation and recovery processes that are crucial for mechanical functions in plants and animals. These processes utilize various mechanochemical mechanisms: swelling directed by the arrangement of cellulosic microfibrils in a bilayer construct, which generates different deformation patterns; lignification gradients; hierarchical foam-like inner structures, some of which also include swelling by hygroscopic cellulose inner cell layer; turgor pressure, which is activated by osmosis and acts at the cellular level, generating reversible motions. In this Review, we present representatives of each of these four mechanisms: pine cones, wheat awns, the twisted opening of Bauhinia pods and the seed of the stork’s bill; the resurrection plant; ice plant seed capsules and carrotwood seed pod; the wilting and redressing of plant stems. Natural polymeric materials produced by animals can also exhibit hydration-driven shape and strength recovery: bird feathers and hair are prime examples. Spider silk — a non-keratinous biopolymer — also exhibits humidity-driven reversible deformation. After describing these animal-based mechanisms, we outline bioinspired applications to actuate multifunctional and biocompatible smart materials, and indicate future directions of research with potential for new bioinspired designs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanisms of hydration-induced movement.
Fig. 2: Hygroscopic movements that enable plants to disperse or self-bury their seeds.
Fig. 3: Hygroscopic movements induced by gradient lignification in resurrection plant Selaginella lepidophylla.
Fig. 4: Hygroscopic structure in an ice plant seed capsule and the porous structure in a carrotwood seed pod.
Fig. 5: Effect of hydration on turgor pressure in a plant stem.
Fig. 6: Principal mechanisms operating in bilayer-based deformation of plants.
Fig. 7: Hydration-induced shape and strength recovery of bird feathers.
Fig. 8: Hydration-induced shape memory effect in animal hairs.
Fig. 9: Humidity-driven reversible supercontraction of spider silk as an artificial muscle.
Fig. 10: Bioinspired self-shaping materials manufactured by magnetic-field-controlled reinforcement and 4D printing.
Fig. 11: Plant-inspired soft responsive materials fabricated by controlled molecular self- assembly.
Fig. 12: Reversible hydration-induced motion in synthetic systems inspired by either skin or silk.

Similar content being viewed by others

References

  1. Zhang, X. et al. The pathway to intelligence: using stimuli-responsive materials as building blocks for constructing smart and functional systems. Adv. Mater. 31, 1804540 (2019).

    Google Scholar 

  2. Sokolov, I. L., Cherkasov, V. R., Tregubov, A. A., Buiucli, S. R. & Nikitin, M. P. Smart materials on the way to theranostic nanorobots: molecular machines and nanomotors, advanced biosensors, and intelligent vehicles for drug delivery. Biochim. Biophys. Acta, Gen. Subj. 1861, 1530–1544 (2017).

    CAS  Google Scholar 

  3. Holdren, J. P. et al. Materials Genome Initiative Strategic Plan. Technical Report December 2014. National Science and Technology Council https://www.mgi.gov/sites/default/files/documents/mgi_strategic_plan_-_dec_2014.pdf (2014).

  4. Raccuglia, P. et al. Machine-learning-assisted materials discovery using failed experiments. Nature 533, 73–73 (2016).

    CAS  Google Scholar 

  5. Qin, Z. et al. Artificial intelligence method to design and fold alpha-helical structural proteins from the primary amino acid sequence. Extreme Mech. Lett. 36, 100652 (2020).

    Google Scholar 

  6. Yu, C. H., Qin, Z. & Buehler, M. J. Artificial intelligence design algorithm for nanocomposites optimized for shear crack resistance. Nano Futures 3, 035001 (2019).

    CAS  Google Scholar 

  7. Yang, C. Q., Wu, Z. S. & Ye, L. P. Self-diagnosis of hybrid CFRP rods and as-strengthened concrete structures. J. Intell. Mater. Syst. Struct. 17, 609–618 (2006).

    CAS  Google Scholar 

  8. Inada, H., Okuhara, Y. & Kumagai, H. in Sensing Issues in Civil Structural Health Monitoring (ed. Ansari F.) 239–248 (Springer, 2005).

  9. Fukui, Y., Fukuda, M. & Fujimoto, K. Generation of mucin gel particles with self-degradable and -releasable properties. J. Mater. Chem. B 6, 781–788 (2018).

    CAS  Google Scholar 

  10. Nakajima, N., Sugai, H., Tsutsumi, S. & Hyon, S. H. Self-degradable bioadhesive. Key Eng. Mater. 342–343, 713–716 (2007).

    Google Scholar 

  11. Hager, M. D., Greil, P., Leyens, C., van der Zwaag, S. & Schubert, U. S. Self-healing materials. Adv. Mater. 22, 5424–5430 (2010).

    CAS  Google Scholar 

  12. Wu, D. Y., Meure, S. & Solomon, D. Self-healing polymeric materials: a review of recent developments. Prog. Polym. Sci. 33, 479–522 (2008).

    CAS  Google Scholar 

  13. Speck, O. & Speck, T. An overview of bioinspired and biomimetic self-repairing materials. Biomimetics 4, 26 (2019).

    CAS  Google Scholar 

  14. Asquith, R. S., Blair, H. S., Crangle, A. A. & Riordan, E. Self-colored polymers based on anthraquinone residues. J. Soc. Dye. Colour. 93, 114–125 (1977).

    CAS  Google Scholar 

  15. Wang, Z. et al. A novel mechanochromic and photochromic polymer film: when rhodamine joins polyurethane. Adv. Mater. 27, 6469–6474 (2015).

    CAS  Google Scholar 

  16. Oliver, K., Seddon, A. & Trask, R. S. Morphing in nature and beyond: a review of natural and synthetic shape-changing materials and mechanisms. J. Mater. Sci. 51, 10663–10689 (2016).

    CAS  Google Scholar 

  17. Erb, R. M., Sander, J. S., Grisch, R. & Studart, A. R. Self-shaping composites with programmable bioinspired microstructures. Nat. Commun. 4, 1712 (2013).

    Google Scholar 

  18. Gibson, J. S. et al. Reconfigurable antennas based on self-morphing liquid crystalline elastomers. IEEE Access 4, 2340–2348 (2016).

    Google Scholar 

  19. Otsuka, K. & Ren, X. Physical metallurgy of Ti-Ni-based shape memory alloys. Prog. Mater. Sci. 50, 511–678 (2005).

    CAS  Google Scholar 

  20. Hager, M. D., Bode, S., Weber, C. & Schubert, U. S. Shape memory polymers: past, present and future developments. Prog. Polym. Sci. 49–50, 3–33 (2015).

    Google Scholar 

  21. Lai, A., Du, Z. H., Gan, C. L. & Schuh, C. A. Shape memory and superelastic ceramics at small scales. Science 341, 1505–1508 (2013).

    CAS  Google Scholar 

  22. Leng, J. S., Lan, X., Liu, Y. J. & Du, S. Y. Shape-memory polymers and their composites: stimulus methods and applications. Prog. Mater. Sci. 56, 1077–1135 (2011).

    CAS  Google Scholar 

  23. Wang, Z., Li, K., He, Q. & Cai, S. A light-powered ultralight tensegrity robot with high deformability and load capacity. Adv. Mater. 31, 1806849 (2019).

    Google Scholar 

  24. He, Q., Wang, Z., Song, Z. & Cai, S. Bioinspired design of vascular artificial muscle. Adv. Mater. Technol. 4, 1800244 (2019).

    Google Scholar 

  25. Pikul, J. H. et al. Stretchable surfaces with programmable 3D texture morphing for synthetic camouflaging skins. Science 358, 210–214 (2017).

    CAS  Google Scholar 

  26. Geetha, M., Singh, A. K., Asokamani, R. & Gogia, A. K. Ti based biomaterials, the ultimate choice for orthopaedic implants–a review. Prog. Mater. Sci. 54, 397–425 (2009).

    CAS  Google Scholar 

  27. Lendlein, A. & Langer, R. Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296, 1673–1676 (2002).

    Google Scholar 

  28. Stuart, M. A. et al. Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 9, 101–113 (2010).

    Google Scholar 

  29. Langer, R. & Tirrell, D. A. Designing materials for biology and medicine. Nature 428, 487–492 (2004).

    CAS  Google Scholar 

  30. Meyers, M. A., McKittrick, J. & Chen, P. Y. Structural biological materials: critical mechanics-materials connections. Science 339, 773–779 (2013).

    CAS  Google Scholar 

  31. Fratzl, P. & Weinkamer, R. Nature’s hierarchical materials. Prog. Mater. Sci. 52, 1263–1334 (2007).

    CAS  Google Scholar 

  32. Ritchie, R. O. The conflicts between strength and toughness. Nat. Mater. 10, 817–822 (2011).

    CAS  Google Scholar 

  33. Teyssier, J., Saenko, S. V., van der Marel, D. & Milinkovitch, M. C. Photonic crystals cause active colour change in chameleons. Nat. Commun. 6, 6368 (2015).

    CAS  Google Scholar 

  34. DeMartini, D. G., Krogstad, D. V. & Morse, D. E. Membrane invaginations facilitate reversible water flux driving tunable iridescence in a dynamic biophotonic system. Proc. Natl Acad. Sci. USA 110, 2552–2556 (2013).

    CAS  Google Scholar 

  35. Szulgit, G. K. & Shadwick, R. E. Dynamic mechanical characterization of a mutable collagenous tissue: response of sea cucumber dermis to cell lysis and dermal extracts. J. Exp. Biol. 203, 1539–1550 (2000).

    CAS  Google Scholar 

  36. Thurmond, F. & Trotter, J. Morphology and biomechanics of the microfibrillar network of sea cucumber dermis. J. Exp. Biol. 199, 1817–1828 (1996).

    CAS  Google Scholar 

  37. Allen, R. D. Mechanism of the seismonastic reaction in Mimosa pudica. Plant Physiol. 44, 1101–1107 (1969).

    CAS  Google Scholar 

  38. Stuhlman, O. & Darden, E. B. The action potentials obtained from Venus’s-flytrap. Science 111, 491–492 (1950).

    Google Scholar 

  39. Dawson, C., Vincent, J. F. V. & Rocca, A. M. How pine cones open. Nature 390, 668 (1997).

    CAS  Google Scholar 

  40. Harrington, M. J. et al. Origami-like unfolding of hydro-actuated ice plant seed capsules. Nat. Commun. 2, 337 (2011).

    Google Scholar 

  41. Armon, S., Efrati, E., Kupferman, R. & Sharon, E. Geometry and mechanics in the opening of chiral seed pods. Science 333, 1726–1730 (2011).

    CAS  Google Scholar 

  42. Elbaum, R., Zaltzman, L., Burgert, I. & Fratzl, P. The role of wheat awns in the seed dispersal unit. Science 316, 884–886 (2007).

    CAS  Google Scholar 

  43. Abraham, Y. et al. Tilted cellulose arrangement as a novel mechanism for hygroscopic coiling in the stork’s bill awn. J. R. Soc. Interface 9, 640–647 (2012).

    Google Scholar 

  44. Liu, Z. Q., Jiao, D. & Zhang, Z. F. Remarkable shape memory effect of a natural biopolymer in aqueous environment. Biomaterials 65, 13–21 (2015).

    CAS  Google Scholar 

  45. Sullivan, T. N., Zhang, Y. L., Zavattieri, P. D. & Meyers, M. A. Hydration-induced shape and strength recovery of the feather. Adv. Funct. Mater. 28, 1801250 (2018).

    Google Scholar 

  46. Huang, W. et al. How water can affect keratin: hydration-driven recovery of bighorn sheep (Ovis canadensis) horns. Adv. Funct. Mater. 29, 1901077 (2019).

    Google Scholar 

  47. Xiao, X. L. & Hu, J. L. Animal hairs as water-stimulated shape memory materials: mechanism and structural networks in molecular assemblies. Sci. Rep. 6, 26393 (2016).

    CAS  Google Scholar 

  48. Liu, Y., Shao, Z. & Vollrath, F. Relationships between supercontraction and mechanical properties of spider silk. Nat. Mater. 4, 901–905 (2005).

    CAS  Google Scholar 

  49. Liu, D. et al. Spider dragline silk as torsional actuator driven by humidity. Sci. Adv. 5, eaau9183 (2019).

    CAS  Google Scholar 

  50. Skotheim, J. M. & Mahadevan, L. Physical limits and design principles for plant and fungal movements. Science 308, 1308–1310 (2005).

    CAS  Google Scholar 

  51. Forterre, Y., Skotheim, J. M., Dumais, J. & Mahadevan, L. How the Venus flytrap snaps. Nature 433, 421–425 (2005).

    CAS  Google Scholar 

  52. Hofhuis, H. & Hay, A. Explosive seed dispersal. New Phytol. 216, 339–342 (2017).

    Google Scholar 

  53. Llorens, C. et al. The fern cavitation catapult: mechanism and design principles. J. R. Soc. Interface 13, 20150930 (2016).

    CAS  Google Scholar 

  54. Evangelista, D., Hotton, S. & Dumais, J. The mechanics of explosive dispersal and self-burial in the seeds of the filaree, Erodium cicutarium (Geraniaceae). J. Exp. Biol. 214, 521–529 (2011).

    Google Scholar 

  55. Deegan, R. D. Finessing the fracture energy barrier in ballistic seed dispersal. Proc. Natl Acad. Sci. USA 109, 5166–5169 (2018).

    Google Scholar 

  56. Witztum, A. & Schulgasser, K. The mechanics of seed expulsion in Acanthaceae. J. Theor. Biol. 176, 531–542 (1995).

    Google Scholar 

  57. Rafsanjani, A., Brulé, V., Western, T. L. & Pasini, D. Hydro-responsive curling of the resurrection plant Selaginella lepidophylla. Sci. Rep. 5, 8064 (2015).

    CAS  Google Scholar 

  58. Elbaum, R. & Abraham, Y. Insights into the microstructures of hygroscopic movement in plant seed dispersal. Plant Sci. 223, 124–133 (2014).

    CAS  Google Scholar 

  59. Fratzl, P., Elbaum, R. & Burgert, I. Cellulose fibrils direct plant organ movements. Faraday Discuss. 139, 275–282 (2008).

    CAS  Google Scholar 

  60. Barthelat, F., Yin, Z. & Buehler, M. J. Structure and mechanics of interfaces in biological materials. Nat. Rev. Mater. 1, 16007 (2016).

    CAS  Google Scholar 

  61. Evert, R. F. & Eichhorn, S. E. Raven biology of plants, 8th edn. Reviewed by Chaffey, N. Ann. Bot. 113, vii (2014).

    Google Scholar 

  62. Wei, L. & McDonald, A. G. A review on grafting of biofibers for biocomposites. Materials 9, 303 (2016).

    Google Scholar 

  63. Elbaum, R., Gorb, S. & Fratzl, P. Structures in the cell wall that enable hygroscopic movement of wheat awns. J. Struct. Biol. 164, 101–107 (2008).

    CAS  Google Scholar 

  64. Goswami, L. et al. Stress generation in the tension wood of poplar is based on the lateral swelling power of the G-layer. Plant J. 56, 531–538 (2008).

    CAS  Google Scholar 

  65. Timoshenko, S. Analysis of bi-metal thermostats. J. Opt. Soc. Am. 11, 233–255 (1925).

    CAS  Google Scholar 

  66. Harlow, W. M., Côté, W. A. & Day, A. C. The opening mechanism of pine cone scales. J. For. 62, 538–540 (1964).

    Google Scholar 

  67. Poppinga, S. et al. Hygroscopic motions of fossil conifer cones. Sci. Rep. 7, 40302 (2017).

    CAS  Google Scholar 

  68. Reyssat, E. & Mahadevan, L. Hygromorphs: from pine cones to biomimetic bilayers. J. R. Soc. Interface 6, 951–957 (2009).

    CAS  Google Scholar 

  69. Elbaum R. in Plant Biomechanics: From Structure to Function at Multiple Scales (eds Geitmann, A. & Gril, J.) 235–246 (Springer, 2018).

  70. Fahn, A. & Zohary, M. On the pericarpial structure of the legumen, its evolution and relation to dehiscence. Phytomorphology 5, 99–111 (1955).

    Google Scholar 

  71. Rascio, N. & Rocca, N. L. Resurrection plants: the puzzle of surviving extreme vegetative desiccation. Crit. Rev. Plant Sci. 24, 209–225 (2005).

    CAS  Google Scholar 

  72. Shen, J. H., Xie, Y. M., Zhou, S. W., Huang, X. D. & Ruan, D. Water-responsive rapid recovery of natural cellular material. J. Mech. Behav. Biomed. Mater. 34, 283–293 (2014).

    CAS  Google Scholar 

  73. Razghandi, K. et al. Hydro-actuation of ice plant seed capsules powered by water uptake. Bioinspired Biomim. Nanobiomater, 3, 169–182 (2014).

    Google Scholar 

  74. Steudle, E., Zimmermann, U. & Lüttge, U. Effect of turgor pressure and cell size on the wall elasticity of plant cells. Plant Physiol. 59, 285–289 (1977).

    CAS  Google Scholar 

  75. Burgert, I. & Fratzl, P. Actuation systems in plants as prototypes for bioinspired devices. Philos. Trans. R. Soc. A 367, 1541–1557 (2009).

    CAS  Google Scholar 

  76. Braam, J. In touch: plant responses to mechanical stimuli. New Phytol. 165, 373–389 (2005).

    Google Scholar 

  77. Egan, P., Sinko, R., LeDuc, P. R. & Keten, S. The role of mechanics in biological and bio-inspired systems. Nat. Commun. 6, 7418 (2015).

    Google Scholar 

  78. Lachenbruch, B. & McCulloh, K. A. Traits, properties, and performance: how woody plants combine hydraulic and mechanical functions in a cell, tissue, or whole plant. New Phytol. 204, 747–764 (2014).

    Google Scholar 

  79. Masic, A. et al. Osmotic pressure induced tensile forces in tendon collagen. Nat. Commun. 6, 5942 (2015).

    CAS  Google Scholar 

  80. Chou, C. C. et al. Ion effect and metal-coordinated cross-linking for multiscale design of Nereis jaw inspired mechanomutable materials. ACS Nano 11, 1858–1868 (2017).

    CAS  Google Scholar 

  81. Wang, B., Yang, W., McKittrick, J. & Meyers, M. A. Keratin: structure, mechanical properties, occurrence in biological organisms, and efforts at bioinspiration. Prog. Mater. Sci. 76, 229–318 (2016).

    CAS  Google Scholar 

  82. McKittrick, J. et al. The structure, functions, and mechanical properties of keratin. JOM 64, 449–468 (2012).

    Google Scholar 

  83. Wang, B. & Meyers, M. A. Light like a feather: a fibrous natural composite with a shape changing from round to square. Adv. Sci. 4, 1600360 (2017).

    Google Scholar 

  84. Huang, W., Zaheri, A., Jung, J. Y., Espinosa, H. D. & McKittrick, J. Hierarchical structure and compressive deformation mechanisms of bighorn sheep (Ovis canadensis) horn. Acta Biomater. 64, 1–14 (2017).

    Google Scholar 

  85. Yu, Y., Yang, W., Wang, B. & Meyers, M. A. Structure and mechanical behavior of human hair. Mater. Sci. Eng. C 73, 152–163 (2017).

    CAS  Google Scholar 

  86. Yu, Y., Yang, W. & Meyers, M. A. Viscoelastic properties of α-keratin fibers in hair. Acta Biomater. 64, 15–28 (2017).

    CAS  Google Scholar 

  87. Miserez, A. & Guerette, P. A. Phase transition-induced elasticity of α-helical bioelastomeric fibres and networks. Chem. Soc. Rev. 42, 1973–1995 (2012).

    Google Scholar 

  88. Agnarsson, I., Dhinojwala, A., Sahni, V. & Blackledge, T. A. Spider silk as a novel high performance biomimetic muscle driven by humidity. J. Exp. Biol. 212, 1989–1993 (2009).

    Google Scholar 

  89. Keten, S., Xu, Z., Ihle, B. & Buehler, M. J. Nanoconfinement controls stiffness, strength and mechanical toughness of β-sheet crystals in silk. Nat. Mater. 9, 359–367 (2010).

    CAS  Google Scholar 

  90. Ene, R., Papadopoulos, P. & Kremer, F. Combined structural model of spider dragline silk. Soft Matter 5, 4568–4574 (2009).

    CAS  Google Scholar 

  91. Montero de Espinosa, L., Meesorn, W., Moatsou, D. & Weder, C. Bioinspired polymer systems with stimuli-responsive mechanical properties. Chem. Rev. 117, 12851–12892 (2017).

    CAS  Google Scholar 

  92. Song, K. & Lee, S. J. Pine cone scale-inspired motile origami. NPG Asia Mater. 9, e389 (2017).

    CAS  Google Scholar 

  93. de Haan, L. T., Verjans, J. M. N., Broer, D. J., Bastiaansen, C. W. M. & Schenning, A. P. H. J. Humidity-responsive liquid crystalline polymer actuators with an asymmetry in the molecular trigger that bend, fold and curl. J. Am. Chem. Soc. 136, 10585–10588 (2014).

    Google Scholar 

  94. Ionov, L. Biomimetic hydrogel-based actuating systems. Adv. Funct. Mater. 23, 4555–4570 (2013).

    CAS  Google Scholar 

  95. Zhao, Q. et al. An instant multi-responsive porous polymer actuator driven by solvent molecule sorption. Nat. Commun. 5, 4293 (2014).

    Google Scholar 

  96. Guiducci, L., Fratzl, P., Brechet, Y. & Dunlop, J. W. Pressurized honeycombs as soft-actuators: a theoretical study. J. R. Soc. Interface 11, 20140458 (2014).

    Google Scholar 

  97. Sydney Gladman, A., Matsumoto, E. A., Nuzzo, R. G., Mahadevan, L. & Lewis, J. A. Biomimetic 4D printing. Nat. Mater. 15, 413–418 (2016).

    CAS  Google Scholar 

  98. Huang, C., Quinn, D., Suresh, S. & Hsia, K. J. Controlled molecular self-assembly of complex three-dimensional structures in soft materials. Proc. Natl Acad. Sci. USA 115, 70–74 (2018).

    CAS  Google Scholar 

  99. Huang, C., Wang, Z., Quinn, D., Suresh, S. & Hsia, K. J. Differential growth and shape formation in plant organs. Proc. Natl Acad. Sci. USA 115, 12359–12364 (2018).

    CAS  Google Scholar 

  100. Reichert, S., Menges, A. & Correa, D. Meteorosensitive architecture: biomimetic building skins based on materially embedded and hygroscopically enabled responsiveness. Comput. Aided Des. 60, 50–69 (2015).

    Google Scholar 

  101. Han, Y., Hu, J. & Chen, X. A skin inspired bio-smart composite with water responsive shape memory ability. Mater. Chem. Front. 3, 1128–1138 (2019).

    CAS  Google Scholar 

  102. Wu, Y. et al. Biomimetic supramolecular fibers exhibit water-induced supercontraction. Adv. Mater. 30, 1707169 (2018).

    Google Scholar 

  103. Stahlberg, R. The phytomimetic potential of three types of hydration motors that drive nastic plant movements. Mech. Mater. 41, 1162–1171 (2009).

    Google Scholar 

  104. Autumn, K. et al. Adhesive force of a single gecko foot-hair. Nature 405, 681–685 (2000).

    CAS  Google Scholar 

  105. Autumn, K. et al. Evidence for van der Waals adhesion in gecko setae. Proc. Natl Acad. Sci. USA 99, 12252–12256 (2002).

    CAS  Google Scholar 

  106. Arzt, E., Gorb, S. & Spolenak, R. From micro to nano contacts in biological attachment devices. Proc. Natl Acad. Sci. USA 100, 10603–10606 (2003).

    CAS  Google Scholar 

  107. Hensel, R., Moh, K. & Arzt, E. Engineering micropatterned dry adhesives: from contact theory to handling applications. Adv. Funct. Mater. 28, 1800865 (2018).

    Google Scholar 

  108. Ma, M., Guo, L., Anderson, D. G. & Langer, R. Bio-inspired polymer composite actuator and generator driven by water gradients. Science 11, 186–189 (2013).

    Google Scholar 

  109. Shin, B. et al. Hygrobot: A self-locomotive ratcheted actuator powered by environmental humidity. Sci. Robot. 3, eaar2629 (2018).

    Google Scholar 

  110. Correa, D. et al. 4D pine scale: biomimetic 4D printed autonomous scale and flap structures capable of multi-phase movement. Phil. Trans. R. Soc. A 378, 20190445 (2019).

    Google Scholar 

  111. Liu, Z., Meyers, M. A., Zhang, Z. & Ritchie, R. O. Functional gradients and heterogeneities in biological materials: design principles, functions, and bioinspired applications. Prog. Mater. Sci. 88, 467–498 (2017).

    CAS  Google Scholar 

  112. Higgins, W. E. Prosthechea chochleata. Kew Science http://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:1001247-1#sources (2017).

  113. Wikimedia Commons. Brassavola nodosa. Wikimedia Commons https://commons.wikimedia.org/wiki/File:Brassavola_nodosa_-_Flicker_003.jpg (2017).

Download references

Acknowledgements

This work was supported by a Multi-University Research Initiative (MURI) through the United States Air Force Office of Scientific Research (AFOSR-FA9550-15-1-0009). The input provided by our colleagues in the MURI Program, Horacio Espinosa, Robert Ritchie, Pablo Zavattieri and Joanna McKittrick, is appreciated. We gratefully acknowledge Arnaud Pirosa for preparing the pine-cone specimens and Wen Yang for help on the pine-cone project. Eduard Arzt (INM) and Shengqiang Cai (UCSD) provided valuable help with our Outlook section and we are grateful for his suggestions. Yang Wang, Zhijian Wang and Qiguang He helped with the set-up for photographing some plant tissues. We appreciate Nicole Shen for helping us to collect resurrection plants. Discussions with Xudong Liang on hydroelasticity were also important for preparing the manuscript. The pioneering work on carrotwood seed pod by Audrey Velasco-Hogan is also appreciated. We are grateful to Xuan Zhang at Leibniz Institute for New Materials for help with the schematic drawing for plant-movement mechanisms.

Author information

Authors and Affiliations

Authors

Contributions

H.Q. wrote the first draft of the paper and developed the figures. D.K. provided advice in bioinspired applications. M.A.M. conceived the structure and focus of this paper and participated actively in the writing and illustrations.

Corresponding author

Correspondence to Marc André Meyers.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Orchids Limited: https://www.orchidweb.com/orchids/phragmipedium/species/phrag-brasiliense-clone-a

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quan, H., Kisailus, D. & Meyers, M.A. Hydration-induced reversible deformation of biological materials. Nat Rev Mater 6, 264–283 (2021). https://doi.org/10.1038/s41578-020-00251-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-020-00251-2

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research