Skip to main content

Advertisement

Log in

The Labeling, Visualization, and Quantification of Hyaluronan Distribution in Tumor-Bearing Mouse Using PET and MR Imaging

  • RESEARCH PAPER
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Hyaluronan (HA) based biomaterials are widely used as tissue scaffolds, drug formulations, as well as targeting ligands and imaging probes for diagnosis and drug delivery. However, because of the presence of abundant endogenous HA presented in various tissues in vivo, the pharmacokinetic behavior and biodistribution patterns of exogenously administered HAs have not been well characterized.

Methods

The HA backbone was modified with Diethylenetriamine (DTPA) to enable the chelation of gadolinium (Gd) and aluminum (Al) ions. Series of PET and MR imaging were taken after the injection of HA-DTPA-Gd and HA-DTPA-Al18F while using18F-FDG and Magnevist(DTPA-Gd) as controls. The Tomographic images were analyzed and quantified to reveal the distribution and locations of HA in tumor-bearing mice.

Results

The labeled HAs had good stability in plasma. They retained binding affinity towards CD44s on tumor cell surface. The injected HAs distributed widely in various organs, but were found to be cleared quickly except inside tumor tissues where the signals were higher and persisted longer.

Conclusion

Medical imaging tools, including MR and PET, can be highly valuable for examining biomaterial distribution non-invasively. The HA tumor accumulation properties may be explored for the development of active targeting drug carriers and molecular probes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CCK-8:

Cell counting Kit-8

DTPA:

Diethylenetriamine pentoacetic acid

FBS:

Fetal bovine serum

FOV:

Fields of view

HA:

Hyaluronan

HEC:

Hepato-enteric circulation

PET/CT:

Positron emission tomography/computed tomography

PET/MR:

Positron emission tomography/magnetic resonance

MRI:

Magnetic resonance imaging

NMR:

Nuclear magnetic resonance

RES:

Reticuloendothelial System

ROI:

Regions of interest

SNR:

Signal-to-noise ratio

SPECT:

Single-photon emission computed tomography

SUV:

Standardized uptake value

References

  1. Slomiany MG, Toole BP. CHAPTER 2 - Hyaluronan–CD44 interactions and chemoresistance in cancer cells. In: Stern R, editor. Hyaluronan in cancer biology. San Diego: Academic Press; 2009. p. 19–35.

    Google Scholar 

  2. Fraser JRE, Laurent TC. Turnover and Metabolism of Hyaluronan. In. Ciba Foundation Symposium 143 - The Biology of Hyaluronan: John Wiley & Sons, Ltd.; 2007. p. 41–59.

  3. Schanté CE, Zuber G, Herlin C, Vandamme TF. Chemical modifications of hyaluronic acid for the synthesis of derivatives for a broad range of biomedical applications. Carbohydr Polym. 2011;85(3):469–89.

    Google Scholar 

  4. Fraser JR, Laurent TC, Laurent UB. Hyaluronan: its nature, distribution, functions and turnover. J Intern Med. 1997;242(1):27–33.

    CAS  PubMed  Google Scholar 

  5. Crescenzi V, Francescangeli A, Renier D, Bellini D. New cross-linked and sulfated derivatives of partially deacetylated hyaluronan: synthesis and preliminary characterization. Biopolymers. 2002;64(2):86–94.

    CAS  PubMed  Google Scholar 

  6. Pulakkat S, Balaji SA, Rangarajan A, Raichur AM. Surface engineered protein nanoparticles with hyaluronic acid based multilayers for targeted delivery of anticancer agents. ACS Appl Mater Interfaces. 2016;8(36):23437–49.

    CAS  PubMed  Google Scholar 

  7. Goodarzi N, Ghahremani MH, Amini M, Atyabi F, Ostad SN, Shabani Ravari N, et al. CD44-targeted docetaxel conjugate for cancer cells and cancer stem-like cells: a novel hyaluronic acid-based drug delivery system. Chem Biol Drug Des. 2014;83(6):741–52.

    CAS  PubMed  Google Scholar 

  8. Maiolino S, Moret F, Conte C, Fraix A, Tirino P, Ungaro F, et al. Hyaluronan-decorated polymer nanoparticles targeting the CD44 receptor for the combined photo/chemo-therapy of cancer. Nanoscale. 2015;7(13):5643–53.

    CAS  PubMed  Google Scholar 

  9. Naor D. Editorial: interaction between hyaluronic acid and its receptors (CD44, RHAMM) regulates the activity of inflammation and cancer. Front Immunol. 2016;7(39).

  10. Misra S, Hascall VC, Markwald RR, Ghatak S. Interactions between Hyaluronan and its receptors (CD44, RHAMM) regulate the activities of inflammation and cancer. Front Immunol. 2015;6:201.

    PubMed  PubMed Central  Google Scholar 

  11. Chanmee T, Ontong P, Kimata K, Itano N. Key roles of hyaluronan and its CD44 receptor in the stemness and survival of cancer stem cells. Front Oncol. 2015;5:180.

    PubMed  PubMed Central  Google Scholar 

  12. Underhill CB. The interaction of hyaluronate with the cell surface: the hyaluronate receptor and the core protein. In. Ciba Foundation Symposium 143 - The Biology of Hyaluronan: John Wiley & Sons, Ltd.; 2007. p. 87–106.

  13. Yan Y, Zuo X, Wei D. Concise review: emerging role of CD44 in cancer stem cells: a promising biomarker and therapeutic target. Stem Cells Transl Med. 2015;4(9):1033–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Song JM, Im J, Nho RS, Han YH, Upadhyaya P, Kassie F. Hyaluronan-CD44/RHAMM interaction-dependent cell proliferation and survival in lung cancer cells. Mol Carcinog. 2019;58(3):321–33.

    CAS  PubMed  Google Scholar 

  15. Sun SJ, Wu CC, Sheu GT, Chang HY, Chen MY, Lin YY, et al. Integrin beta3 and CD44 levels determine the effects of the OPN-a splicing variant on lung cancer cell growth. Oncotarget. 2016;7(34):55572–84.

    PubMed  PubMed Central  Google Scholar 

  16. van der Voort R, Manten-Horst E, Smit L, Ostermann E, van den Berg F, Pals ST. Binding of cell-surface expressed CD44 to hyaluronate is dependent on splicing and cell type. Biochem Biophys Res Commun. 1995;214(1):137–44.

    PubMed  Google Scholar 

  17. Vugts DJ, Heuveling DA, Stigter-van Walsum M, Weigand S, Bergstrom M, van Dongen GA, et al. Preclinical evaluation of 89Zr-labeled anti-CD44 monoclonal antibody RG7356 in mice and cynomolgus monkeys: prelude to phase 1 clinical studies. MAbs. 2014;6(2):567–75.

    PubMed  Google Scholar 

  18. Isacke CM, Yarwood H. The hyaluronan receptor, CD44. Int J Biochem Cell Biol. 2002;34(7):718–21.

    CAS  PubMed  Google Scholar 

  19. Platt VM, Szoka FC Jr. Anticancer therapeutics: targeting macromolecules and nanocarriers to hyaluronan or CD44, a hyaluronan receptor. Mol Pharm. 2008;5(4):474–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Battistini FD, Flores-Martin J, Olivera ME, Genti-Raimondi S, Manzo RH. Hyaluronan as drug carrier. The in vitro efficacy and selectivity of hyaluronan-doxorubicin complexes to affect the viability of overexpressing CD44 receptor cells. Eur J Pharm Sci. 2014;65:122–9.

    CAS  PubMed  Google Scholar 

  21. Cho HJ, Yoon HY, Koo H, Ko SH, Shim JS, Cho JH, et al. Hyaluronic acid-ceramide-based optical/MR dual imaging nanoprobe for cancer diagnosis. J Control Release. 2012;162(1):111–8.

    CAS  PubMed  Google Scholar 

  22. Lee J-Y, Chung S-J, Cho H-J, Kim D-D. Iodinated hyaluronic acid oligomer-based nanoassemblies for tumor-targeted drug delivery and cancer imaging. Biomaterials. 2016;85(Supplement C):218–31.

    CAS  PubMed  Google Scholar 

  23. Wang L, Draz MS, Wang W, Liao G, Xu Y. The quality of in vivo upconversion fluorescence signals inside different anatomic structures. J Biomed Nanotechnol. 2015;11(2):325–33.

    CAS  PubMed  Google Scholar 

  24. Czernin J. Molecular imaging and therapy with a purpose: a renaissance of nuclear medicine. J Nucl Med. 2017;58(1):21A–2A.

  25. Pichler BJ, Kolb A, Nägele T, Schlemmer H-P. PET/MRI: paving the way for the next generation of clinical multimodality imaging applications. J Nucl Med. 2010;51(3):333–6.

    PubMed  Google Scholar 

  26. Blanchet EM, Millo C, Martucci V, Maass-Moreno R, Bluemke DA, Pacak K. Integrated whole-body PET/MRI with 18F-FDG, 18F-FDOPA, and 18F-FDA in paragangliomas in comparison with PET/CT: NIH first clinical experience with a single-injection, dual-modality imaging protocol. Clin Nucl Med. 2014;39(3):243–50.

    PubMed  PubMed Central  Google Scholar 

  27. Spick C, Herrmann K, Czernin J. 18F-FDG PET/CT and PET/MRI perform equally well in Cancer: evidence from studies on more than 2,300 patients. J Nucl Med. 2016;57(3):420–30.

  28. Caravan P, Ellison JJ, McMurry TJ, Lauffer RB. Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem Rev. 1999;99(9):2293–352.

    CAS  PubMed  Google Scholar 

  29. Shiftan L, Neeman M. Kinetic analysis of hyaluronidase activity using a bioactive MRI contrast agent. Contrast Media Mol Imaging. 2006;1(3):106–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Yim H, Yang SG, Jeon YS, Park IS, Kim M, Lee DH, et al. The performance of gadolinium diethylene triamine pentaacetate-pullulan hepatocyte-specific T1 contrast agent for MRI. Biomaterials. 2011;32(22):5187–94.

    CAS  PubMed  Google Scholar 

  31. Rui M, Tang H, Li Y, Wei X, Xu Y. Recombinant high density lipoprotein nanoparticles for target-specific delivery of siRNA. Pharm Res. 2013;30(5):1203–14.

    CAS  PubMed  Google Scholar 

  32. Rui M, Guo W, Ding Q, Wei X, Xu J, Xu Y. Recombinant high-density lipoprotein nanoparticles containing gadolinium-labeled cholesterol for morphologic and functional magnetic resonance imaging of the liver. Int J Nanomedicine. 2012;7:3751–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. McBride WJ, Sharkey RM, Karacay H, D'Souza CA, Rossi EA, Laverman P, et al. A novel method of 18F radiolabeling for PET. J Nucl Med. 2009;50(6):991–8.

  34. Li Y, Zhang D, Shi Y, Guo Z, Wu X, Ren J-L, et al. Syntheses and preliminary evaluation of [18F]AlF-NOTA-G-TMTP1 for PET imaging of high aggressive hepatocellular carcinoma. Contrast Media Mol Imaging. 2016;11(4):262–71.

    CAS  PubMed  Google Scholar 

  35. Ugi I, Domling A, Werner B. Since 1995 the new chemistry of multicomponent reactions and their libraries, including their heterocyclic chemistry. J Heterocyclic Chem. 2000;37(3):647–58.

    CAS  Google Scholar 

  36. Hua Q, Knudson CB, Knudson W. Internalization of hyaluronan by chondrocytes occurs via receptor-mediated endocytosis. J Cell Sci. 1993;106(Pt 1):365–75.

    CAS  PubMed  Google Scholar 

  37. Embry JJ, Knudson W. G1 domain of aggrecan cointernalizes with hyaluronan via a CD44-mediated mechanism in bovine articular chondrocytes. Arthritis Rheum. 2003;48(12):3431–41.

    CAS  PubMed  Google Scholar 

  38. Lieber M, Smith B, Szakal A, Nelson-Rees W, Todaro G. A continuous tumor-cell line from a human lung carcinoma with properties of type II alveolar epithelial cells. Int J Cancer. 1976;17(1):62–70.

    CAS  PubMed  Google Scholar 

  39. Lin J, Wu H, Wang Y, Lin J, Chen Q, Zhu X. Preparation and ocular pharmacokinetics of hyaluronan acid-modified mucoadhesive liposomes. Drug Deliv. 2016;23(4):1144–51.

    CAS  PubMed  Google Scholar 

  40. Jeong YI, Kim ST, Jin SG, Ryu HH, Jin YH, Jung TY, et al. Cisplatin-incorporated hyaluronic acid nanoparticles based on ion-complex formation. J Pharm Sci. 2008;97(3):1268–76.

    CAS  PubMed  Google Scholar 

  41. Bouziotis P, Psimadas D, Tsotakos T, Stamopoulos D, Tsoukalas C. Radiolabeled iron oxide nanoparticles as dual-modality SPECT/MRI and PET/MRI agents. Curr Top Med Chem. 2012;12(23):2694–702.

    CAS  PubMed  Google Scholar 

  42. Hnatowich DJ. Label stability in serum of four radionuclides on DTPA-coupled antibodies—an evaluation. Int J Rad Appl Instrum B. 1986;13(4):353–8.

  43. Treglia G, Sadeghi R, Del Sole A, Giovanella L. Diagnostic performance of PET/CT with tracers other than F-18-FDG in oncology: an evidence-based review. Clin Transl Oncol. 2014;16(9):770–5.

    CAS  PubMed  Google Scholar 

  44. Hai W, Wu X, Shi S, Yang Y, Yang Z, Li B, et al. The effects of season change and fasting on Brown adipose tissue FDG-PET in mice. Biochem Biophys Res Commun. 2020;529(2):398–403.

    CAS  PubMed  Google Scholar 

  45. Babasola O, Rees-Milton KJ, Bebe S, Wang J, Anastassiades TP. Chemically modified N-acylated hyaluronan fragments modulate proinflammatory cytokine production by stimulated human macrophages. J Biol Chem. 2014;289(36):24779–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Yamawaki H, Hirohata S, Miyoshi T, Takahashi K, Ogawa H, Shinohata R, et al. Hyaluronan receptors involved in cytokine induction in monocytes. Glycobiology. 2009;19(1):83–92.

    CAS  PubMed  Google Scholar 

  47. Rossin R, Robillard MS. Pretargeted imaging using bioorthogonal chemistry in mice. Curr Opin Chem Biol. 2014;21:161–9.

    CAS  PubMed  Google Scholar 

  48. Zeglis BM, Sevak KK, Reiner T, Mohindra P, Carlin SD, Zanzonico P, et al. A pretargeted PET imaging strategy based on bioorthogonal Diels-Alder click chemistry. J Nucl Med. 2013;54(8):1389–96.

  49. Goldenberg DM, Chang CH, Rossi EA, JW MB, Sharkey RM. Pretargeted molecular imaging and radioimmunotherapy. Theranostics. 2012;2(5):523–40.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

We would like to thank Shanghai Atom Kexing Pharmaceuticals Co., Ltd., for supplying the 18F fluorine. This study was supported by the National Natural Science Foundation of China (No. 81571787 and 81690262), Ruijin Youth NSFC Cultivation Fund (No. 2019QNPY02019), and the Medical-Engineering Joint Fund of Shanghai Jiao Tong University (No. YG2015MS54).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinliang Peng or Yuhong Xu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hai, W., Bao, X., Sun, K. et al. The Labeling, Visualization, and Quantification of Hyaluronan Distribution in Tumor-Bearing Mouse Using PET and MR Imaging. Pharm Res 37, 237 (2020). https://doi.org/10.1007/s11095-020-02957-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-020-02957-y

KEY WORDS

Navigation