Skip to main content

Advertisement

Log in

A computational study on the thioguanine drug interaction with silicon carbide graphyne-like nanosheets

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

6-Thioguanine (6-TG) drug is commonly used for the treatment of inflammatory bowel disease, acquired immune deficiency syndrome, Crohn’s disease, and childhood acute lymphoblastic leukaemia. However, a high dose of 6-TG may cause severe side effects, including bone marrow depression and gastrointestinal complications. Two-dimensional nanomaterials have attracted the attention of researchers as chemical sensors for different biological molecules. Here, density functional theory calculations were performed to explore the interaction properties of 6-TG with a silicon carbide monolayer (SiCM) as well as noble metal (Au)-decorated SiCM (Au@SiCM) to elaborate on their potential application as electronic sensors. The sensing response of the SiCM to the 6-TG drug is very small (~ 3.9 at 298 K) because of a weak interaction with adsorption energy and charge transfer of − 0.15 eV and 0.03 |e|, respectively. An Au atom was preferentially adsorbed above a Si-C bond of the SiCM, releasing the energy of 3.79 eV. By the Au decoration, the 6-TG was strongly adsorbed onto the Au@SiCM with adsorption energy of − 0.79 eV and the sensing response increased to 384.0. The recovery time for the 6-TG desorption from the Au@SiCM surface was obtained to be 2.3 s. Consequently, the Au@SiCM can transform the existence of 6-TG molecules into electrical signals and it may potentially be applied as an electronic sensor for the recognition of the 6-TG drug.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Harms D, Janka-Schaub GE (2000) Leukemia 14:2234

    CAS  PubMed  Google Scholar 

  2. Vora A, Mitchell C, Lennard L, Eden T (2006) Lancet 368:1339

    CAS  PubMed  Google Scholar 

  3. Wang W, Wang SF, Xie F (2006) Sens Actuators B Chem 120:238

    CAS  Google Scholar 

  4. Cangemi G, Barabino A, Barco S (2012) Int J Immunopathol Pharmacol 25:435

    CAS  PubMed  Google Scholar 

  5. Pacheco J, Gueorguiev G, Martins JL (2002) Phys Rev B 66:033401

    Google Scholar 

  6. dos Santos RB, Rivelino R, de B Mota F, Gueorguiev GK (2012) J Phys Chem A 116:9080

    PubMed  Google Scholar 

  7. Yang L, Chen M, Wang J, Qiao Y, Guo P, Zhu S, Wang F (2020) J Mater Sci Technol 45:49

    Google Scholar 

  8. He L, Liu J, Liu Y, Cui B, Hu B, Wang M, Peng Z (2019) Appl Catal B: Env 248:366

    CAS  Google Scholar 

  9. Gao N, Hou H, Cheng B, Zhang R (2018) Inter J Mod Phys B 32:1850005

    Google Scholar 

  10. Zhu W, Deng M, Chen D, Zhang Z, Chai W, Chen D, Xi H, Hang J, Hang C, Hao Y (2020) ACS Appl Mater Inter 12:32961

    CAS  Google Scholar 

  11. Wang M, Guo Y, Wang B, Luo H, Zhang X, Wang Q, Zhang Y, Wu H, Liu H, Dou S (2020) J Mater Chem A 8:2969

    CAS  Google Scholar 

  12. Cai C, Wu X, Liu W, Zhu W, Chen H, Qiu JCD, Sun CN, Liu J, Wei Q, Shi Y (2020) J Mater Sci Technol 57:51

    Google Scholar 

  13. Gao N, Wu JH, Yu L, Hou H (2016) Int J Mod Phys B 30:1650111

    Google Scholar 

  14. Luo X, Guo J, Chang P, Qian H, Pei F, Wang W, Miao K, Guo S, Feng G (2020) Sep Purific Technol 239:116516

    CAS  Google Scholar 

  15. Cai C, Tey WS, Chen J, Zhu W, Liu X, Liu T, Zhao L, Zhou K (2021) J Mater Proc Technol 288:116882

    CAS  Google Scholar 

  16. Duan J, Zhang Y, Yin Y (2018) Sens Actuators B Chem 257:504

    CAS  Google Scholar 

  17. Liu X, Ma T, Pinna N, Zhang J (2017) Adv Funct Mater 27:1702168

    Google Scholar 

  18. Hill EW, Vijayaragahvan A, Novoselov K (2011) IEEE Sens J 11:3161

    CAS  Google Scholar 

  19. Li C, Thostenson ET, Chou T-W (2008) Comp Sci Technol 68:1227

    CAS  Google Scholar 

  20. Cao Q, Rogers JA (2009) Adv Mater 21:29

    CAS  Google Scholar 

  21. Golberg D, Bando Y, Tang C, Zhi C (2007) Adv Mater 19:2413

    CAS  Google Scholar 

  22. Kalay S, Yilmaz Z, Sen O, Emanet M, Kazanc E (2015) Beil J Nanotech 6:84

    Google Scholar 

  23. Ma R, Golberg D, Bando Y, Sasaki T (2004) Phys Eng Sci 362:2161

    CAS  Google Scholar 

  24. Ronning C, Schwen D, Eyhusen S, Vetter U, Hofsäss H (2002) Surf Coat Technol 158:382

    Google Scholar 

  25. Lv R, dos Santos MC, Antonelli C, Feng S (2014) Adv Mater 26:7593

    CAS  PubMed  Google Scholar 

  26. Ju Z, Xu L, Pang Q, Xing Z, Ma X (2009) Nanotechnology 20:355604

    PubMed  Google Scholar 

  27. Lan X, Liang C, Wu M (2018) J Phys Chem C 122:18537

    CAS  Google Scholar 

  28. Dou Y-K, Li J-B, Fang X-Y (2014) Appl Phys Lett 104:052102

    Google Scholar 

  29. Hosseinian A, Khosroshahi ES (2017) J Mol Model 23:354

    CAS  PubMed  Google Scholar 

  30. Javan MB, Shirdel-Havar AH (2016) Int J Hydrogen Energy 41:22886

    Google Scholar 

  31. Wang N, Tian Y, Zhao J (2016) J Mol Graph Modell 66:196

    CAS  Google Scholar 

  32. Shi C, Chen Y, Qin H, Li L (2015) Chem Phys Lett 635:23

    CAS  Google Scholar 

  33. Peyghan AA, Aslanzadeh SA, Noei M (2014) Phys B 443:54

    Google Scholar 

  34. Peyghan AA, Moradi M (2014) Thin Solid Film 552:111

    CAS  Google Scholar 

  35. Illyaskutty N, Kohler H (2013) J Mater Chem C 1:3976

    CAS  Google Scholar 

  36. Chen Q, Chen S, Gao F (2016) J Mater Chem C 4:1363

    CAS  Google Scholar 

  37. Gao N, Cheng B, Hou H, Zhang R (2018) Mater Lett 212:243

    CAS  Google Scholar 

  38. Bano A, Krishna J, Pandey DK, Gau NK (2019) Phys Chem Chem Phys 21:4633

    CAS  PubMed  Google Scholar 

  39. Behmagham F, Vessally E, Massoumi B (2016) Superlatt Microst 100:350

    CAS  Google Scholar 

  40. Bagheri R, Babazadeh M, Vessally E (2018) Inorg Chem Comm 90:8

    CAS  Google Scholar 

  41. Xiao C, Ma K, Cai G, Zhang X, Vessally E (2020) J Mol Graph Modell 96:107539

    CAS  Google Scholar 

  42. Hosseinian A, Salary M, Arshadi S (2018) Solid State Commun 269:23

    Google Scholar 

  43. Nejati K, Hosseinian A, Vessally E (2017) Appl Surf Sci 422:763

    CAS  Google Scholar 

  44. Cossi M, Barone V, Cammi R, Tomasi J (1996) Chem Phys Lett 255:327

    CAS  Google Scholar 

  45. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA Jr (1993) J Comp Chem 14:1347

    CAS  Google Scholar 

  46. O’Boyle N, Tenderholt A, Langner K (2008) J Comput Chem 29:839

    PubMed  Google Scholar 

  47. Yang Y, Weaver MN, Merz KM (2009) J Phys Chem A 113:9843

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Grimme S (2004) J Comput Chem 25:1463

    CAS  PubMed  Google Scholar 

  49. Boys SF, Bernardi F (1970) Mol Phys 19:553

    CAS  Google Scholar 

Download references

Acknowledgements

Science and Technology Innovation Project of Colleges and Universities in Shanxi Province (Serial number: 2020L0382).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunhua Shi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Y., Shen, Y., Zhang, L. et al. A computational study on the thioguanine drug interaction with silicon carbide graphyne-like nanosheets. Monatsh Chem 151, 1797–1804 (2020). https://doi.org/10.1007/s00706-020-02706-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-020-02706-2

Keywords

Navigation