Skip to main content
Log in

Synthesis and cytotoxic evaluation of halogenated furanones

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The objective of the current study is to evaluate the potency of halogen-furan-2(5H)-one-type derivatives against human cancer cell lines. Four known bromofuran-2(5H)-one-type derivatives, as well as five new and two known bromo-4-(phenylamino)furan-2(5H)-one-type compounds and six novel and two known halogen-4-alkyl-5-phenyl-3-(phenylamino)furan-2(5H)-one-type derivatives, were synthesized and evaluated for their anticancer activity against prostate (PC-3) and colon (HCT-116) human cancer cell lines. The results showed that only the bromofuran-2(5H)-ones were cytotoxic in both cell lines. Three of these displayed particularly useful antiproliferative activities, in both cancer cells evaluated. (E)-5-(Bromomethylene)furan-2-(5H)-one was the most active against PC-3 (IC50 0.93 ± 0.02 μM) while 3,4-dibromofuran-2(5H)-one was the most active against HCT-116 (IC50 0.4 ± 0.04 μM). Furthermore, flow cytometry studies revealed that the bromofuran-2(5H)-ones induced cell death by apoptosis. Also, it was found that the cytotoxic furanones induced lipid peroxidation, determined by TBARS assay. Thus, cytotoxicity of the active compounds could be associated with ROS production. Additionally, it must be taken into account that all cytotoxic compounds contain an electrophilic carbon atom in position 4, which can explain, through a non-specific reactivity with nucleophiles, the cytotoxic activity of these compounds.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Globocan 2019. https://gco.iarc.fr/today/data/factsheets/populations/900-world-fact-sheets.pdf. Accessed 9 May 2020

  2. Lopez-Lazaro M, Pastor N, Azrak SS, Ayusco CA, Austin F, Cortes F (2005) J Nat Prod 68:1642

    Article  CAS  Google Scholar 

  3. Lopez-Lazaro M (2007) Expert Opin Ther Targets 11:1043

    Article  CAS  Google Scholar 

  4. Newman RA, Yang P, Pawlus AD, Keith IB (2008) Mol Interv 8:36

    Article  CAS  Google Scholar 

  5. Peng CK, Zeng T, Xu XJ, Chang YQ, Hou W, Lu K, Lin H, Sun PH, Lin J, Chen WM (2017) Eur J Med Chem 127:187

    Article  CAS  Google Scholar 

  6. Byczek-Wyrosteka A, Kitela R, Rumaka K, Skoniecznab M, Kasprzyckaa A, Walczaka K (2018) Eur J Med Chem 150:687

    Article  Google Scholar 

  7. Manny AJ, Kjelleberg S, Kumar N, Nys R, Read RW, Steinberg P (1997) Tetrahedron 53:15813

    Article  CAS  Google Scholar 

  8. MacDonald SF (1974) Can J Chem 52:3257

    Article  CAS  Google Scholar 

  9. Benneche T, Lönn J, Scheie AA (2006) Synth Commun 36:1401

    Article  CAS  Google Scholar 

  10. Taylor GA (1963) Org Synth Coll 4:688

    Google Scholar 

  11. Bellina F, Anselmi C, Viel S, Mannina L, Rossi R (2001) Tetrahedron 57:9997

    Article  CAS  Google Scholar 

  12. Cunha S, Oliveira C, Sabino JR (2011) J Braz Chem Soc 22:598

    Article  CAS  Google Scholar 

  13. Narayana MS, Madhav B, Vijay KA, Rama RK, Nageswar YVD (2009) Tetrahedron 65:5251

    Article  Google Scholar 

  14. Hall IH, Lee KH, Mar EC, Starnes CO, Waddell TG (1997) J Med Chem 20:333

    Article  Google Scholar 

  15. Zeni O, Di Pietro R, d’Ambrosio G, Massa R, Capri M, Naarale J, Juutilainen J, Scarfì MR (2007) Radiat Res 167:306

    Article  CAS  Google Scholar 

  16. Hernández-Vázquez E, Miranda LD (2016) Org Biomol Chem 14:4875

    Article  Google Scholar 

  17. Liviac D, Creus A, Marcos R (2009) Environ Mol Mutagen 50:413

    Article  CAS  Google Scholar 

  18. Wu H, Song Z, Hentzer M, Andersen JB, Moli S, Givskov M, Høiby N (2004) J Antimicrob Chemother 53:1054

    Article  CAS  Google Scholar 

  19. Kibanova A, Camacho AN, Silva JC (2009) Environ Sci Technol 43:7550

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Víctor A. Castro-Torres is a doctoral student from the Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM) and has received CONACyT fellowship 267787. This study was supported by Grants from PAPIIT IN211819 and CONACyT 402838 and 00042. We acknowledge the technical support of MS Antonio Nieto-Camacho and MS María Teresa O. Ramírez-Apan from Instituto de Química-UNAM.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nadia J. Jacobo-Herrera or Mariano Martínez-Vázquez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 12311 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castro-Torres, V.A., Jacobo-Herrera, N.J., Díaz-Sánchez, L. et al. Synthesis and cytotoxic evaluation of halogenated furanones. Monatsh Chem 151, 1841–1849 (2020). https://doi.org/10.1007/s00706-020-02708-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-020-02708-0

Keywords

Navigation