Skip to main content
Log in

A Comparison of Physical, Chemical, Biological and Combined Treatments for Detoxification of Free Gossypol in Crushed Whole Cottonseed

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Oilseed plants such as cotton (Gossypium sp.) generate abundant biomass residues which contain significant levels of edible oil, crude proteins and other desirable biomolecules for the animal nutrition industry. The application of cottonseed cake in animal feed, a by-product of the cotton industry, is limited due to the natural presence of toxic free gossypol (FG), wherein efficient and cost-effective methods for FG detoxification are necessary. Herein, pretreatment methods for reducing FG in crushed whole cottonseed (CWCS) were compared, with residual FG quantified using a sensitive Ultra High-Performance Liquid Chromatography method for detection at trace levels in cottonseed materials. Physical treatment by autoclaving resulted in up to 96% detoxification of FG, without reduction in crude protein (CP) content. Chemical treatment with 1% and 2% Ca(OH)2 eliminated FG to as low as 0.04%, although a reduction in CP content was observed. Similarly, native fermentation, whilst reducing FG content by 99.66% after 6 days incubation, also reduced CP content. In combined physical and biological solid-state fermentation (SSF), basidiomycete fungi Ganoderma lucidum CC351, Panus lecomtei CC40, Pleurotus ostreatus CC389, Pleurotus sapidus CC28 and Pycnoporus sanguineus CC400 all degraded FG in autoclaved CWCS to trace levels often lower than obtained by individual treatments. A reduction in total lipids and increase in CP were also observed, improving nutritional quality. The most efficient fungi, P. ostreatus CC389 and P. lecomtei CC40, secreted considerable laccase and manganese peroxidase enzymes during SSF, potentially involved in FG detoxification. Cost effective, non-polluting, value-adding approaches for FG detoxification offer potential in animal feed industries.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Sequences enabling molecular identification were deposited in GenBank (https://www.ncbi.nlm.nih.gov) under accession numbers MK603977, MK603978, MK603976, MK603979 and MK603975.

References

  1. Mena, H., Santos, J.E.P., Huber, J.T., Tarazon, M., Calhoun, M.C.: The effects of varying gossypol intake from whole cottonseed and cottonseed meal on lactation and blood parameters in lactating dairy cows. J. Dairy Sci. 87(8), 2506–2518 (2004)

    Google Scholar 

  2. Stipanovic, R.D., Lopez, J.D., Dowd, M.K., Puckhaber, L.S., Duke, S.E.: Effect of racemic and (+)-and (−)-gossypol on the survival and development of Helicoverpa zea larvae. J. Chem. Ecol. 32(5), 959–968 (2006)

    Google Scholar 

  3. Dalle Zotte, A., Brand, T.S., Hoffman, L.C., Schoon, K., Cullere, M., Swart, R.: Effect of cottonseed oilcake inclusion on ostrich growth performance and meat chemical composition. Meat Sci. 93(2), 194–200 (2013)

    Google Scholar 

  4. Puckhaber, L.S., Zheng, X., Bell, A.A., Stipanovic, R.D., Nichols, R.L., Liu, J., Duke, S.E.: Differences in active defense responses of two gossypium barbadense L. cultivars resistant to Fusarium oxysporum f. sp. vasinfectum Race 4. J. Agric. Food Chem. 66(49), 12961–12966 (2018)

    Google Scholar 

  5. Calhoun, M.C., Kuhlmann, S.W., Baldwin. B.C.: Assessing the gossypol status of cattle fed cottonseed products. In: Proceedings of the Pacific Northwest Animal Nutrition Conference, pp. 147A–157A, Portland, OR (1995)

  6. Noftsger, S.M., Hopkins, B.A., Diaz, D.E., Brownie, C., Whitlow, L.W.: Effect of whole and expanded-expelled cottonseed on milk yield and blood gossypol. J. Dairy Sci. 83, 2539–2547 (2000)

    Google Scholar 

  7. Blackwelder, J.T., Hopkins, B.A., Diaz, D.E., Whitlow, L.W., Brownie, C.: Milk production and plasma gossypol of cows fed cottonseed and oilseed meals with or without rumen-undegradable protein. J. Dairy Sci. 81, 2934–2941 (1998)

    Google Scholar 

  8. Alexander, J., Andersson, H.C., Bernhoft, A., Brimer, L., et al.: Gossypol as undesirable substance in animal feed. EFSA J. 908, 1–55 (2008)

    Google Scholar 

  9. Knutsen, H.K., Barregård, L., Bignami, M., Brüschweiler, B., et al.: Presence of free gossypol in whole cottonseed. Scientific opinion of the panel on contaminants in the food chain (CONTAN). EFSA J. 15, e048501 (2017)

    Google Scholar 

  10. Gadelha, I.C.N., Fonseca, N.B.S., Oloris, S.C.S., Melo, M.M., Soto-Blanco, B.: Gossypol toxicity from cottonseed products. Sci. World J. 2014, 231635 (2014)

    Google Scholar 

  11. Atia, A.I., Abdel-Rahim, G.A.: Detoxification treatments of free gossypol in cottonseed meal by microbial treatment of mixed cultures and biochemical evaluation on rabbits. J. Rad. Res. Appl. Sci. 2(2), 397–415 (2009)

    Google Scholar 

  12. Zhang, Y., Zhang, Z., Dai, L., Liu, Y., Cheng, M., Chen, L.: Isolation and characterization of a novel gossypol-degrading bacteria Bacillus subtilis strain Rumen Bacillus subtilis. Asian-Australas. J. Anim. Sci. 31(1), 63 (2018)

    Google Scholar 

  13. Nomeir, A., Abou-Donia, M.: Photodecomposition of gossypol by ultraviolet irradiation. J. Am. Oil Chem. Soc. 62, 87–89 (1985)

    Google Scholar 

  14. Gerasimidis, K., Fillou, D.T., Babatzimcpoulou, M., Tassou, K., Katsikas, H.: Preparation of an edible cottonseed protein concentrate and evaluation of its functional properties. Int. J. Food Sci. Nutr. 58(6), 486–490 (2007)

    Google Scholar 

  15. Wang, X., Howell, C.P., Chen, F., Yin, J., Jiang, Y.: Gossypol-a polyphenolic compound from cotton plant. Adv. Food Nutr. Res. 58, 215–263 (2009)

    Google Scholar 

  16. Nagalakshmi, D., Sastry, V.R.B., Agrawal, D.K.: Detoxification of undecorticated cottonseed meal by various physical and chemical methods. Anim. Nutr. Feed Technol. 2(2), 117–126 (2002)

    Google Scholar 

  17. Nagalakshmi, D., Sastry, V.R.B., Pawde, A.: Rumen fermentation patterns and nutrient digestion in lambs fed cottonseed meal supplemental diets. Anim. Feed Sci. Technol. 103(1), 1–14 (2003)

    Google Scholar 

  18. Buser, M.D., Abbas, H.K.: Mechanically processing cottonseed to reduce gossypol and aflatoxin levels. J. Toxicol. Toxin Rev. 20(3–4), 179–208 (2001)

    Google Scholar 

  19. Zhang, W.J., Xu, Z.R., Sun, J.Y., Yang, X.: Effect of selected fungi on the reduction of gossypol levels and nutritional value during solid substrate fermentation of cottonseed meal. J. Zhejiang Univ. Sci. B 7(9), 690–695 (2006)

    Google Scholar 

  20. Zhang, W.J., Xu, Z.R., Zhao, S.H., Jiang, J.F., Wang, Y.B., Yan, X.H.: Optimization of process parameters for reduction of gossypol levels in cottonseed meal by Candida tropicalis ZD-3 during solid substrate fermentation. Toxicon 48(2), 221–226 (2006)

    Google Scholar 

  21. Lim, S.J., Lee, K.J.: A microbial fermentation of soybean and cottonseed meal increases antioxidant activity and gossypol detoxification in diets for Nile tilapia Oreochromis niloticus. J. World Aquac. Soc. 42(4), 494–503 (2011)

    MathSciNet  Google Scholar 

  22. Kulikova, N.A., Klein, O.I., Stepanova, E.V., Koroleva, O.V.: Use of basidiomycetes in industrial waste processing and utilization technologies: fundamental and applied aspects. Appl. Biochem. Microbiol. 47(6), 565 (2011)

    Google Scholar 

  23. Rajarathnam, S., Shashirekha, M.N., Bano, Z.: Biodegradation of gossypol by the white oyster mushroom, Pleurotus florida, during culturing on rice straw growth substrate, supplemented with cottonseed powder. World J. Microb. Biotechnol. 17(3), 221–227 (2001)

    Google Scholar 

  24. Fackler, K., Gradinger, C., Hinterstoisser, B., Messner, K., Schwanninger, M.: Lignin degradation by white rot fungi on spruce wood shavings during short-time solid-state fermentations monitored by near infrared spectroscopy. Enzyme Microb. Technol. 39(7), 1476–1483 (2006)

    Google Scholar 

  25. Conceição, A.A., Soares Neto, C.B., Ribeiro, J.A., Siqueira, F.G., Miller, R.N., Mendonça, S.: Development of an RP-UHPLC-PDA method for quantification of free gossypol in cottonseed cake and fungal-treated cottonseed cake. PLoS ONE 13(5), e0196164 (2018)

    Google Scholar 

  26. Gardes, M., Bruns, T.D.: ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol. Ecol. 2(2), 113–118 (1993)

    Google Scholar 

  27. Menolli Junior, N., Asai, T., Capelari, M., Paccola-Meirelles, L.D.: Morphological and molecular identification of four Brazilian commercial isolates of Pleurotus spp. and cultivation on corncob. Braz. Arch. Biol. Technol. 53(2), 397–408 (2010)

    Google Scholar 

  28. Liu, Y.J., Whelen, S., Hall, B.D.: Phylogenetic relationships among ascomycetes: evidence from an RNA polymerse II subunit. Mol. Biol. Evol. 16(12), 1799–1808 (1999)

    Google Scholar 

  29. Matheny, P.B., Wang, Z., Binder, M., Curtis, J.M., Lim, Y.W., Nilsson, R.H., Langer, E.: Contributions of rpb2 and tef1 to the phylogeny of mushrooms and allies (Basidiomycota, Fungi). Mol. Phylogenet. Evol. 43(2), 430–451 (2007)

    Google Scholar 

  30. Kumar, S., Stecher, G., Tamura, K.: MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33(7), 1870–1874 (2016)

    Google Scholar 

  31. Wolfenden, B.S., Willson, R.L.: Radical-cations as reference chromogens in kinetic studies of ono-electron transfer reactions: pulse radiolysis studies of 2, 2′-azinobis-(3-ethylbenzthiazoline-6-sulphonate). J. Chem. Soc. Perkin Trans. 2, 805–812 (1982)

    Google Scholar 

  32. Kuwahara, M., Glenn, J.K., Morgan, M.A., Gold, M.H.: Separation and characterization of two extracelluar H2O2-dependent oxidases from ligninolytic cultures of Phanerochaete chrysosporium. FEBS Lett. 169(2), 247–250 (1984)

    Google Scholar 

  33. Van-Soest, P.J.: Nutritional Ecology of the Ruminant, 2nd edn. Comstock Publishing Assoc, Ithaca (1994)

    Google Scholar 

  34. Cunniff, P.: Official Methods of Analysis of AOAC International, 16th edn. AOAC International, Arlington, Washington, DC (1995)

    Google Scholar 

  35. Lima, E.S., Valente, T.N.P., Roça, R.O., Cezário, A.S., Santos, W.B.R., Deminicis, B.B., Ribeiro, J.C.: Effect of whole cottonseed or protected fat dietary additives on carcass characteristics and meat quality of beef cattle: a review. J. Agric. Sci. 9(5), 175–189 (2017)

    Google Scholar 

  36. Gallup, W.D.: Heat and moisture as factors in the destruction of gossypol in cottonseed products1. Ind. Eng. Chem. 19(6), 726–728 (1927)

    Google Scholar 

  37. Yu, F., McNabb, W.C., Barry, T.N., Moughan, P.J.: Effect of heat treatment upon the chemical composition of cottonseed meal and upon the reactivity of cottonseed condensed tannins. J. Sci. Food Agric. 72(2), 263–272 (1996)

    Google Scholar 

  38. Chai, X., Bi, Y., Sun, S.: Free fatty acids increase gossypol losses in soybean oil during heating. Eur. J. Lipid Sci. Technol. 118(4), 584–591 (2016)

    Google Scholar 

  39. Aslam, M., Arshad, M., Ali, S.M.: Biochemical and nutritional studies on indigenous cottonseeds for the production of detoxified cottonseed flour. Pak. J. Sci. Ind. 13, 271–275 (1970)

    Google Scholar 

  40. Wang, X., Tang, J.W., Yao, X.H., Wu, Y.F., Sun, H., Xu, Y.X.: Effect of Bacillus cereus Br on bacterial community and gossypol content during fermentation in cottonseed meal. Afr. J. Microbiol. Res. 6(36), 6537–6544 (2012)

    Google Scholar 

  41. Sun, Y., Wu, J., Aboukameel, A., Banerjee, S., Arnold, A.A., Chen, J., Wang, S.: Apogossypolone, a nonpeptidic small molecule inhibitor targeting Bcl-2 family proteins, effectively inhibits growth of diffuse large cell lymphoma cells in vitro and in vivo. Cancer Biol. Ther. 7(9), 1418–1426 (2008)

    Google Scholar 

  42. Mellon, J.E., Zelaya, C.A., Dowd, M.K., Beltz, S.B., Klich, M.A.: Inhibitory effects of gossypol, gossypolone, and apogossypolone on a collection of economically important filamentous fungi. J. Agric. Food Chem. 60(10), 2740–2745 (2012)

    Google Scholar 

  43. Lu, Y., Li, J., Dong, C.E., Huang, J., Zhou, H.B., Wang, W.: Recent advances in gossypol derivatives and analogs: a chemistry and biology view. Future Med. Chem. 9(11), 1243–1275 (2017)

    Google Scholar 

  44. Kannan, A., Sastry, V.R.B., Agrawal, D.K., Kumar, A.: Effect of feeding of calcium hydroxide-treated or vitamin E-supplemented cottonseed meal on plasma gossypol levels, blood parameters, and performance of Bikaneri lambs. Trop. Anim. Health Prod. 45(6), 1289–1295 (2013)

    Google Scholar 

  45. Knox, O., Rochester, I., Vadakattu, G., Lawrence, L.: Composting in Australian cotton production. Aust. Cotton Grow. 2006, 46–48 (2006)

    Google Scholar 

  46. Hills, D.J., Curley, R.G., Knutson, J.K., Seiber, J.N., Winterlin, W.L., Rauschkolb, R.S., Elmore, C.L.: Composting treatment for cotton gin trash fines. Trans. ASAE 24(1), 14–19 (1981)

    Google Scholar 

  47. Li, L., Frey, M., Browning, K.J.: Biodegradability study on cotton and polyester fabrics. J. Eng. Fiber Fabr. 5(4), 42–52 (2010)

    Google Scholar 

  48. Khalaf, M.A., Meleigy, S.A.: Reduction of free gossypol levels in cottonseed meal by microbial treatment. Int. J. Agric. Biol. 10(10), 185–190 (2008)

    Google Scholar 

  49. Yang, X., Guo, J., Sun, J.: Biodegradation of free-gossypol by a new fungus isolated from cotton planted soil. Afr. J. Microbiol. Res. 5(19), 3066–3072 (2011)

    Google Scholar 

  50. Nie, C., Zhang, W., Ge, W., Wang, Y., Liu, Y., Liu, J.: Effects of fermented cottonseed meal on the growth performance, apparent digestibility, carcass traits, and meat composition in yellow-feathered broilers. Turk. Vet. Anim. Sci. 39(3), 350–356 (2015)

    Google Scholar 

  51. Mageshwaran, V., Parvez, N.: Gossypol detoxification and lysine enrichment in cottonseed cake by solid state fermentation. J. Pure Appl. Microbiol. 10(2), 1333–1339 (2016)

    Google Scholar 

  52. Sainos, E., Díaz-Godínez, G., Loera, O., Montiel-González, A.M., Sánchez, C.: Growth of Pleurotus ostreatus on wheat straw and wheat-grain-based media: biochemical aspects and preparation of mushroom inoculum. Appl. Microbiol. Biotechnol. 72(4), 812–815 (2006)

    Google Scholar 

  53. Hoa, H.T., Wang, C.L., Wang, C.H.: The effects of different substrates on the growth, yield, and nutritional composition of two oyster mushrooms (Pleurotus ostreatus and Pleurotus cystidiosus). Mycobiology 43(4), 423–434 (2015)

    Google Scholar 

  54. Mkhize, S.S., Cloete, J., Basson, A.K., Zharare, G.E.: Performance of Pleurotus ostreatus mushroom grown on maize stalk residues supplemented with various levels of maize flour and wheat bran. Food Sci. Technol. 36(4), 598–605 (2016)

    Google Scholar 

  55. Oyetayo, V.O., Ariyo, O.: Antimicrobial and antioxidant properties of Pleurotus ostreatus (Jacq: Fries) cultivated on different tropical woody substrates. J. Waste Conserv. Bioprod. Biotechnol. 1(2), 28–32 (2013)

    Google Scholar 

  56. Ajith, T.A., Janardhanan, K.K.: Indian medicinal mushrooms as a source of antioxidant and antitumor agents. J. Clin. Biochem. Nutr. 40(3), 157–162 (2007)

    Google Scholar 

  57. Bose, A., Keharia, H.: Phorbol ester detoxificationin Jatropha seedcake using white rot fungi. 3 Biotech 4(4), 447–450 (2014)

    Google Scholar 

  58. Silambarasan, S., Abraham, J.: Efficacy of Ganoderma sp. JAS4 in bioremediation of chlorpyrifos and its hydrolyzing metabolite TCP from agricultural soil. J. Basic Microbiol. 54(1), 44–55 (2014)

    Google Scholar 

  59. Kulshreshtha, S., Mathur, N., Bhatnagar, P.: Mushroom as a product and their role in mycoremediation. AMB Express 4, 29 (2014)

    Google Scholar 

  60. Mustafa, M.M., Jamal, P., Alkhatib, M.A.F., Mahmod, S.S., Jimat, D.N., Ilyas, N.N.: Panus tigrinus as a potential biomass source for reactive blue decolorization: isotherm and kinetic study. Electron. J. Biotechnol. 26, 7–11 (2017)

    Google Scholar 

  61. da Luz, J.M.R., Paes, S.A., Nunes, M.D., da Silva, M.D.C.S., Kasuya, M.C.M.: Detoxificationof oxo-biodegradable plastic by Pleurotus ostreatus. PLoS ONE 8(8), e69386 (2013)

    Google Scholar 

  62. Gomes, T.G., Hadi, S.I., Costa Alves, G.S., Mendonça, S., De Siqueira, F.G., Miller, R.N.: Current strategies for the detoxification of Jatropha curcas seed cake: a review. J. Agric. Food Chem. 66(11), 2510–2522 (2018)

    Google Scholar 

  63. Nagpal, R., Shrivastava, B., Kumar, N., Dhewa, T., Sahay, H.: Microbial feed additives. In: Puniya, A.K., Singh, R., Kamra, D.N. (eds.) Rumen Microbiology: From Evolution to Revolution, pp. 161–175. Springer, India (2015)

    Google Scholar 

  64. Nayan, N., Sonnenberg, A.S., Hendriks, W.H., Cone, J.W.: Screening of white-rot fungi for bioprocessing of wheat straw into ruminant feed. J. Appl. Microbiol. 125(2), 468–479 (2018)

    Google Scholar 

  65. Wang, J., Cao, F., Su, E., Zhao, L., Qin, W.: Improvement of animal feed additives of Ginkgo leaves through solid-state fermentation using Aspergillus niger. Int. J. Biol. Sci. 14(7), 736 (2018)

    Google Scholar 

  66. Gunturu, D.R., Yegireddy, M., Mannem, S., Mekapogu, A.R., Tollamadugu, N.P.: Effective role of microorganisms in livestock development. In: Buddolla, V. (ed.) Recent Developments in Applied Microbiology and Biochemistry, pp. 185–194. Elsevier, Amsterdam (2019)

    Google Scholar 

  67. Villas-Bôas, S.G., Esposito, E., Mitchell, D.A.: Microbial conversion of lignocellulosic residues for production of animal feeds. Anim. Feed Sci. Technol. 98(1–2), 1–12 (2002)

    Google Scholar 

  68. Sousa, D., Venâncio, A., Belo, I., Salgado, J.M.: Mediterranean agro-industrial wastes as valuable substrates for lignocellulolytic enzymes and protein production by solid-state fermentation. J. Sci. Food Agric. 98(14), 5248–5256 (2018)

    Google Scholar 

  69. Leontievsky, A., Myasoedova, N., Golovleva, L., Sedarati, M., Evans, C.: Adaptation of the white-rot basidiomycete Panus tigrinus for transformation of high concentrations of chlorophenols. Appl. Microbiol. Biotechnol. 59(4–5), 599–604 (2002)

    Google Scholar 

  70. Mao, Y.B., Cai, W.J., Wang, J.W., Hong, G.J., Tao, X.Y., Wang, L.J., Chen, X.Y.: Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat. Biotechnol. 25(11), 1307–1313 (2007)

    Google Scholar 

  71. Hirosue, S., Tazaki, M., Hiratsuka, N., Yanai, S., Kabumoto, H., Shinkyo, R., Ichinose, H.: Insight into functional diversity of cytochrome P450 in the white-rot basidiomycete Phanerochaete chrysosporium: involvement of versatile monooxygenase. Biochem. Biophys. Res. Commun. 407(1), 118–123 (2011)

    Google Scholar 

  72. Mageshwaran, V., Sharma, V., Chinnkar, M., Parvez, N., Krishnan, V.: Biodegradation of gossypol by mixed fungal cultures in minimal medium. Appl. Biochem. Microbiol. 54(3), 301–308 (2018)

    Google Scholar 

  73. Felsenstein, J.: Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39(4), 783–791 (1985)

    Google Scholar 

  74. Jukes, T.H., Cantor, C.R., Munro, H.N.: Evolution of protein molecules. In: Munro, H.N. (ed.) Mammalian Protein Metabolism, pp. 21–132. Academic Press, New York (1969)

    Google Scholar 

Download references

Funding

This work was financially supported by CAPES (project finance code 001) and CNPq/Embrapa (Project Number 404786/2013-8). RNGM was supported by a fellowship from CNPq (Project Number 305418/2017-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Neil Gerard Miller.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest, or competing financial or scientific interest.

Informed Consent

The authors declare consent to participate. The authors declare consent for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 219 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soares Neto, C.B., Conceição, A.A., Gomes, T.G. et al. A Comparison of Physical, Chemical, Biological and Combined Treatments for Detoxification of Free Gossypol in Crushed Whole Cottonseed. Waste Biomass Valor 12, 3965–3975 (2021). https://doi.org/10.1007/s12649-020-01290-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01290-0

Keywords

Navigation