Skip to main content
Log in

The role of local bond-order at crystallization in a simple supercooled liquid

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Large scale Molecular Dynamics simulations of 65 systems with N = 80 000 Lennard–Jones particles at two different supercooled liquid state points reveal, that the supercooled states contain spatially heterogeneous distributed subdomains of particles with significant higher bond-order than the mean bond-order in the supercooled liquid. The onset of the crystallization starts in such an area with relatively high six-fold bond-order for a supercooled state, but low bond-order for a fcc crystal state, and the crystallization is initiated by a nucleus where all particles in the critical nucleus have a significant lower bond-order than in a fcc crystal. The critical nucleus of N ≈ 70 particles is surrounded by many hundreds of particles with relatively high supercooled liquid bond-order and many of these particles are aligned with the crystal ordered particles in the critical nucleus. The crystallizations are very fast and supported by a fast growth of the supercooled areas with relative high liquid bond-order. The crystallizations are to fcc crystals, but a significant part of the crystallizations exhibit five-fold arrangements of polycrystalline subdomains mainly with fcc crystal order and sign of hcp crystallites.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.J. Alder, T.E. Wainwright, J. Chem. Phys. 27, 1208 (1957)

    Article  ADS  Google Scholar 

  2. J.P. Hansen, L. Verlet, Phys. Rev. 184, 151 (1969)

    Article  ADS  Google Scholar 

  3. S. Auer, D. Frenkel, Nature 409, 1020 (2001)

    Article  ADS  Google Scholar 

  4. S. Pronk, D. Frenkel, J. Chem. Phys. 110, 4589 (1999)

    Article  ADS  Google Scholar 

  5. J.C. Pámies, A. Cacciuto, D. Frenkel, J. Chem. Phys. 131, 044514 (2009)

    Article  ADS  Google Scholar 

  6. J.R. Errington, P.G. Debenedetti, S. Torquato, J. Chem. Phys. 118, 2256 (2003)

    Article  ADS  Google Scholar 

  7. M. Volmer, A. Weber, Z. Phys. Chem. 119, 277 (1926)

    Google Scholar 

  8. R. Becker, W. Döring, Ann. Phys. (Leipzig) 24, 719 (1935)

    Article  ADS  Google Scholar 

  9. For a recent review of CNT, see V. Kalikmanov,Nucleation Theory (Springer, 2013)

  10. A. Kuhnhold, H. Meyer, G. Amati, P. Pelagejcev, T. Schilling, Phys. Rev. E 100, 052140 (2019)

    Article  ADS  Google Scholar 

  11. W. Ouyang, B. Sun, Z. Sun, S. Xu, J. Chem. Phys. 152, 054903 (2020)

    Article  ADS  Google Scholar 

  12. S. Toxvaerd, J. Chem. Phys. 143, 154705 (2015)

    Article  ADS  Google Scholar 

  13. S. Toxvaerd, J. Chem. Phys. 144, 164502 (2016)

    Article  ADS  Google Scholar 

  14. S. Jungblut, C. Dellargo, Eur. Phys. J. E 39, 77 (2016)

    Article  Google Scholar 

  15. H.Tanaka, Eur. Phys. J. E 35, 113 (2012)

    Article  Google Scholar 

  16. P.J. Steinhardt, D.R. Nelson, M. Ronchetti, Phys. Rev. B 28, 784 (1983)

    Article  ADS  Google Scholar 

  17. M.D. Ediger, Ann. Rev. Phys. Chem. 51, 99 (2000)

    Article  ADS  Google Scholar 

  18. A. Widmer-Cooper, P. Harrowell, H. Fynewever, Phys. Rev. Lett. 93, 135701 (2004)

    Article  ADS  Google Scholar 

  19. A. Widmer-Cooper, P. Harrowell, Phys. Rev. Lett. 96, 185701 (2006)

    Article  ADS  Google Scholar 

  20. B. O’Malley, I. Snook, Phys. Rev. Lett. 90, 085702 (2003)

    Article  ADS  Google Scholar 

  21. N.C. Karayiannis, R. Malshe, M. Kröger, J.J. de Pablo, M. Laso, Soft Matter 8, 844 (2012)

    Article  ADS  Google Scholar 

  22. P.R. ten Wolde, M.J. Ruiz-Montero, D. Frenkel, Phys. Rev. Lett. 75, 2714 (1995)

    Article  ADS  Google Scholar 

  23. A.V. Anikeenko, N.N. Medvedev, J. Struct. Chem. 47, 267 (2006)

    Article  Google Scholar 

  24. C. Desgranges, J. Delhommelle, Phys. Rev. Lett. 98, 235502 (2007)

    Article  ADS  Google Scholar 

  25. J. Russo, H. Tanaka, Soft Matter 8, 4206 (2012)

    Article  ADS  Google Scholar 

  26. J.T. Berryman, M. Anwar, S. Dorosz, T. Schilling, J. Chem. Phys. 145, 211901 (2016)

    Article  ADS  Google Scholar 

  27. S. Dorosz, T. Schilling, J. Chem. Phys. 139, 124508 (2013)

    Article  ADS  Google Scholar 

  28. C. Desgranges, J. Delhommelle, J. Am. Chem. Soc. 128, 10368 (2006)

    Article  Google Scholar 

  29. C. Desgrange, J. Delhommelle, J. Phys. Chem. B 111, 1465 (2007)

    Article  Google Scholar 

  30. S. Toxvaerd, Eur. Phys. J. Plus 135, 267 (2020)

    Article  Google Scholar 

  31. S. Toxvaerd, J.C. Dyre, J. Chem. Phys. 134, 081102 (2011)

    Article  ADS  Google Scholar 

  32. S. Toxvaerd, O.J. Heilmann, J.C. Dyre, J. Chem. Phys. 136, 224106 (2012)

    Article  ADS  Google Scholar 

  33. S. Toxvaerd, Condens. Matter Phys. 18, 13002 (2015)

    Article  Google Scholar 

  34. S. Toxvaerd, J. Phys. Chem. C 111, 15620 (2007)

    Article  Google Scholar 

  35. M.A. Barroso, A.L. Ferreira, J. Chem Phys. 116, 7145 (2002)

    Article  ADS  Google Scholar 

  36. W. Lechner, C. Dellago, J. Chem. Phys. 129, 114707 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Søren Toxvaerd.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toxvaerd, S. The role of local bond-order at crystallization in a simple supercooled liquid. Eur. Phys. J. B 93, 202 (2020). https://doi.org/10.1140/epjb/e2020-10367-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2020-10367-y

Keywords

Navigation