Skip to main content
Log in

Structural, electronic and optical properties of S-doped, Sc-doped and Sc–S co-doped anatase TiO2: a DFT + U calculation

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Defect formation energies, electronic structures and optical properties of non-metal S, lanthanide metal Sc-doped and Sc–S co-doped anatase TiO2 were systematically investigated via a GGA + U method based on density functional theory (DFT). The on-site Coulomb corrections were applied to both 3d orbitals of Ti atom (UTi_3d) and 2p orbitals of O atom (UO_2p). The results show all doped TiO2 systems exhibit a certain degree of red-shift due to the presence of impurity levels in the bandgap; in particular, the S-doped and Sc–S co-doped TiO2 exhibit better light absorption properties in the visible light range than either pure or Sc-doped TiO2. In addition, the positive synergistic effect between the Sc and S atoms not only expands the absorption edge, but also increases the light absorption coefficient in the visible region. As a result, the Sc–S co-doped anatase TiO2 shows the best optical absorption spectrum in all doping systems.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Fujishima, K. Honda, Nature 238, 37 (1972)

    Article  ADS  Google Scholar 

  2. X. Li, Q. Xie, Z. Tian, Chem. Phys. Lett. 710, 143 (2018)

    Article  ADS  Google Scholar 

  3. D. Yu, W. Zhou, Y. Liu, B. Zhou, P. Wu, Phys. Lett. A 379, 1666 (2015)

    Article  ADS  Google Scholar 

  4. I. Ali, M. Suhail, Z.A. Alothman, A. Alwarthan, RSC Adv. 8, 30125 (2018)

    Article  Google Scholar 

  5. Q.J. Liu, Z.T. Liu, Mater. Sci. Semicond. Process. 41, 257 (2016)

    Article  ADS  Google Scholar 

  6. S.S. Ataei, M.R. Mohammadizadeh, N. Seriani, Phys. Rev. B 95, 155205 (2017)

    Article  ADS  Google Scholar 

  7. T. Luttrell, S. Halpegamage, J. Tao, A. Kramer, E. Sutter, M. Batzill, Sci. Rep. 4, 4043 (2014)

    Article  ADS  Google Scholar 

  8. L. Liu, H. Zhao, J.M. Andino, Y. Li, ACS Catal. 2, 1817 (2012)

    Article  Google Scholar 

  9. M. Harb, P. Sautet, P. Raybaud, J. Phys. Chem. C 117, 8892 (2013)

    Article  Google Scholar 

  10. W. Zeng, Q.J. Liu, Z.T. Liu, Appl. Mech. Mater. 727, 79 (2015)

    Article  ADS  Google Scholar 

  11. G. Xin, H. Pan, D. Chen, Z. Zhang, B. Wen, J. Phys. Chem. Solids 74, 286 (2013)

    Article  ADS  Google Scholar 

  12. T. Umebayashi, T. Yamaki, H. Itoh, K. Asai, Appl. Phys. Lett. 81, 454 (2002)

    Article  ADS  Google Scholar 

  13. Y. Cui, H. Du, L. Wen, Solid State Commun. 149, 634 (2009)

    Article  ADS  Google Scholar 

  14. Y.F. Zhao, C. Li, S. Lu, L.J. Yan, Y.Y. Gong, L.Y. Niu, X.J. Liu, Chem. Phys. Lett. 647, 36 (2016)

    Article  ADS  Google Scholar 

  15. C. Li, Y.F. Zhao, Y.Y. Gong, T. Wang, C.Q. Sun, Phys. Chem. Chem. Phys. 16, 21446 (2014)

    Article  Google Scholar 

  16. A. Stashans, Y. Bravo, Mod. Phys. Lett. B 27, 1350113 (2013)

    Article  ADS  Google Scholar 

  17. A. Iwaszuk, M. Nolan, J. Phys. Chem. C 115, 12995 (2011)

    Article  Google Scholar 

  18. R. Kralchevska, M. Milanova, D. Hristov, A. Pintar, D. Todorovsky, Mater. Res. Bull. 47, 2165 (2012)

    Article  Google Scholar 

  19. X. Niu, X. Lu, T. Cui, J. Zhou, Res. Chem. Intermed. 38, 807 (2012)

    Article  Google Scholar 

  20. A. Latini, C. Cavallo, F.K. Aldibaja, D. Gozzi, D. Carta, A. Corrias, L. Lazzarini, G. Salviati, J. Phys. Chem. C 117, 25276 (2013)

    Article  Google Scholar 

  21. N.S. Kozhevnikova, E.S. Ulyanova, E.V. Shalaeva, T.I. Gorbunova, A.O. Bokunyaeva, A.A. Yushkov, L.Y. Buldakova, M.Y. Yanchenko, M.V. Kuznetsov, L.A. Pasechnik, A.N. Enyashin, A.S. Vorokh, J. Mol. Liq. 284, 29 (2019)

    Article  Google Scholar 

  22. M. Nasir, J. Lei, W. Lqbal, J. Zhang, Appl. Surf. Sci. 364, 446 (2016)

    Article  ADS  Google Scholar 

  23. G. Kresse, J. Hafner, Phys. Rev. B 47, 558 (1993)

    Article  ADS  Google Scholar 

  24. G. Kresse, J. Furthmuller, Phys. Rev. B 54, 11169 (1996)

    Article  ADS  Google Scholar 

  25. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  26. A.I. Liechtenstein, V.I. Anisimov, J. Zaanen, Phys. Rev. B 52, R5467 (1995)

    Article  ADS  Google Scholar 

  27. H. Tang, H. Berger, P. Schmid, F. Levy, G. Burri, Solid State Commun. 87, 847 (1993)

    Article  ADS  Google Scholar 

  28. M.E. Arroyo-de Dompablo, A. Morales-García, M. Taravillo, J. Chem. Phys. 135, 054503 (2011)

    Article  ADS  Google Scholar 

  29. S.G. Park, B. Magyari-Köpe, Y. Nishi, Phys. Rev. B 82, 115109 (2010)

    Article  ADS  Google Scholar 

  30. L.A. Agapito, S. Curtarolo, M. Buongiorno Nardelli, Phys. Rev. X 5, 011006 (2015)

    Google Scholar 

  31. C. Liu, Y. Song, X. Yu, J. Liu, J. Deng, Phys. Status Solidi B 255, 1700616 (2018)

    Article  ADS  Google Scholar 

  32. B. Luo, X. Wang, E. Tian, G. Li, L. Li, J. Mater. Chem. C 3, 8625 (2015)

    Article  Google Scholar 

  33. S. Saha, T.P. Sinha, A. Mookerjee, Phys. Rev. B 62, 8828 (2000)

    Article  ADS  Google Scholar 

  34. T. Arlt, M. Bermejo, M.A. Blanco, L. Gerward, J.Z. Jiang, J. Staun Olsen, J.M. Recio, Phys. Rev. B 61, 14414 (2000)

    Article  ADS  Google Scholar 

  35. M. Arrigoni, G.K.H. Madsen, J. Chem. Phys. 152, 044110 (2020)

    Article  ADS  Google Scholar 

  36. J. Li, S. Meng, L. Qin, H. Lu, Chin. Phys. B 26, 087101 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuangwei Xiong.

Additional information

Supplementary material in the form of one pdf file available from the Journal web page at https://doi.org/10.1140/epjb/e2020-10368-x.

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, K., Zheng, Q., Cheng, Z. et al. Structural, electronic and optical properties of S-doped, Sc-doped and Sc–S co-doped anatase TiO2: a DFT + U calculation. Eur. Phys. J. B 93, 201 (2020). https://doi.org/10.1140/epjb/e2020-10368-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2020-10368-x

Keywords

Navigation