Skip to main content
Log in

Clusters and their fundamental role for Trojan Horse Method

  • Review
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The Trojan Horse Method (THM) lays its foundations on the cluster structure of light nuclei which are usually used as “Trojan horses”. Many of them were successfully employed in the last decades to shed light to numerous astrophysical problems. Cluster structure and dynamics also suggest a series of tests which may be performed in order to strengthen the basis of the method. Among them pole invariance was investigated for three different situations. In fact, the cross sections for the \(^6\)Li(d, \(\alpha )^4\)He, \(^2\)H(d,p)\(^3\)H and \(^7\)Li(p, \(\alpha )^4\)He binary reactions were measured for several break-up schemes and analyzed within the framework of the Plane Wave Impulse Approximation (PWIA). The indirect results extracted by using different Trojan Horse nuclei (e.g. \(^2\)H, \(^3\)He, \(^6\)Li) were compared with each other as well as with direct measurements of the corresponding astrophysical reactions. The very good agreement obtained confirms the applicability of the pole approximation and of the pole invariance method, namely the independence of binary indirect cross section on the chosen Trojan Horse nucleus, at least for the cases investigated. Moreover, we can verify that the effect of using a charged or a neutral particle as a spectator implies negligible corrections consistent with the experimental errors. In addition, the dynamics of clusters inside the Trojan Horse nucleus and their fingerprints on the measured momentum distribution play a key role for THM applications. In this article we will therefore discuss also these assertions studied in different systems(\(^2\)H, \(^3\)He, \(^6\)Li, \(^9\)Be, \(^{14}\)N) and in particular for the deuteron case the relative impact of s and d waves in the momentum distribution will also be examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Figure adapted from [52]

Fig. 13

Figure adapted from [52]

Fig. 14

Figure adapted from [52]

Fig. 15

Figure adapted from [52]

Fig. 16

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Data are deposited in INFN-LNS data repository. Researchers who want to access data are kindly asked to contact the authors.]

References

  1. G. Baur, C.A. Bertulani, H. Rebel, Nucl. Phys. A 458, 188 (1986)

    ADS  Google Scholar 

  2. C. Spitaleri 1991, in Problems of Fundamental Modern Physics, II , eds. by R. Cherubini, P. Dalpiaz, B. Minetti Proceedings (World Scientific Publishing, Singapore, 1991), p. 21

  3. M.L. Sergi, C. Spitaleri, M. La Cognata et al., Phys. Rev. C 91, 065803 (2015)

    ADS  Google Scholar 

  4. R.G. Pizzone, G. D’Agata, C. Spitaleri et al., ApJ. 836, 57 (2017)

    ADS  Google Scholar 

  5. I. Indelicato, M. La Cognata et al., Astrophys. J. 845, 19 (2017)

    ADS  Google Scholar 

  6. G. D’Agata, R.G. Pizzone et al., Astrophys. J. 860, 61 (2018)

    ADS  Google Scholar 

  7. R.G. Pizzone, C. Spampinato et al., Eur. Phys. J. A 56, 199 (2020)

    ADS  Google Scholar 

  8. M. Gulino et al., Phys. Rec. C87, 012801 (2013)

    ADS  Google Scholar 

  9. G.L. Guardo, C. Spitaleri, L. Lamia et al., Phys. Rev. C 95, 025807 (2017)

    ADS  Google Scholar 

  10. G.L. Guardo, C. Spitaleri, L. Lamia et al., Eur. Phys. J. A 55, 211 (2019)

    ADS  Google Scholar 

  11. S. Cherubini et al., Phys. Rev. C 92, 015805 (2015)

    ADS  Google Scholar 

  12. R.G. Pizzone, B. Roeder, M. Mckluskey et al., Eur. Phys. J. A 52, 24 (2016)

    ADS  Google Scholar 

  13. M. La Cognata, R.G. Pizzone et al., Ap. J. 846, 65 (2017)

    ADS  Google Scholar 

  14. L. Lamia et al., ApJ. 850, 175 (2017)

    ADS  Google Scholar 

  15. L. Lamia, M. Mazzocco, R.G. Pizzone et al., Astrophys. J. 879, 23 (2019)

    ADS  Google Scholar 

  16. A. Tumino, C. Spitaleri, M. La Cognata et al., Nature 557, 687–690 (2018)

    ADS  Google Scholar 

  17. M. Lattuada et al., ApJ. 562, 1076 (2001)

    ADS  Google Scholar 

  18. C. Spitaleri et al., Phys. Rev. C 63, 055801 (2001)

    ADS  Google Scholar 

  19. R.G. Pizzone, L. Lamia, C. Spitaleri et al., Phys. Rev. C 83, 045801 (2011)

    ADS  Google Scholar 

  20. C. Spitaleri et al., Eur. Phys. J. A 56, 18 (2020)

    ADS  Google Scholar 

  21. S.T. Butler, Phys. Rev. 80, 1095 (1950)

    ADS  Google Scholar 

  22. S.T. Butler, Nature 166, 709 (1950)

    Google Scholar 

  23. S.T. Butler, Proc. R. Soc. A 208, 559 (1951)

    ADS  Google Scholar 

  24. C. Spitaleri et al., Nucl. Phys. A 719, 99c (2003)

    ADS  Google Scholar 

  25. R.E. Tribble et al., Rep. Prog. Phys. 77, 10690 (2014)

    MathSciNet  Google Scholar 

  26. C. Spitaleri, M. La Cognata, L. Lamia, A.M. Mukhamedzhanov, R.G. Pizzone, Eur. Phys. J. A 52, 77 (2016)

    ADS  Google Scholar 

  27. C. Spitaleri, M. La Cognata, L. Lamia, R.G. Pizzone, A. Tumino, Eur. Phys. J. A 55, 161 (2019)

    ADS  Google Scholar 

  28. M. La Cognata et al., Phys. Rev. Lett. 101, 152501 (2008)

    ADS  Google Scholar 

  29. C.A. Bertulani, A. Gade, Phys. Rep. 485, 195 (2010)

    ADS  Google Scholar 

  30. A. Tumino et al., Eur. Phys. J. A 25, 649 (2005)

    Google Scholar 

  31. R.G. Pizzone, C. Spitaleri, C. Bertulani et al., Phys. Rev. C 87, 025805 (2013)

    ADS  Google Scholar 

  32. R.G. Pizzone, R. Spartá, C. Bertulani et al., ApJ. 786, 112 (2014)

    ADS  Google Scholar 

  33. R.G. Pizzone et al., A. & A. 398, 423 (2003)

    ADS  Google Scholar 

  34. C. Spitaleri, L. Lamia et al., Phys. Rev. C 90, 035801 (2014)

    ADS  Google Scholar 

  35. L. Lamia, C. Spitaleri, E. Tognelli et al., Astrophys. J. 811, 99 (2015)

    ADS  Google Scholar 

  36. M. Zadro et al., Phys. Rev. C 40, 181 (1989)

    ADS  Google Scholar 

  37. M. Aliotta, C. Spitaleri et al., Eur. Phys. J. 9, 435 (2000)

    ADS  Google Scholar 

  38. A. Rinollo et al., Nucl. Phys. A 758, 146c (2003)

    ADS  Google Scholar 

  39. A. Tumino et al., Phys. Lett. B 705, 546 (2011)

    ADS  Google Scholar 

  40. R.G. Pizzone et al., Phys. Rev. C 80, 025807 (2009)

    ADS  Google Scholar 

  41. R.G. Pizzone, C. Spitaleri, S. Cherubini et al., Phys. Rev. C 71, 058801 (2005)

    ADS  Google Scholar 

  42. A. Krauss et al., Nucl. Phys. A 465 (1987)

  43. R.E. Brown, N. Jarmie, Phys. Rev. C 41, 1391 (1990)

    ADS  Google Scholar 

  44. S. Barbarino, M. Lattuada, F. Riggi, C. Spitaleri, D. Vinciguerra, Phys. Rev. C 21, 1104 (1980)

    ADS  Google Scholar 

  45. A. Tumino et al., Phys. Rev. Lett. 98, 252502 (2007)

    ADS  Google Scholar 

  46. L. Lamia et al., Nuovo Cimento C 31, 423–431 (2008)

    ADS  Google Scholar 

  47. L. Lamia et al., J. Phys. G 39, 015106 (2012)

    ADS  Google Scholar 

  48. R.W. Zurmühle et al., Phys. Rev. C 49, 2549 (1994)

    ADS  Google Scholar 

  49. T.L. Belyaeva, N.S. Zelenskaya, Phys. Rev. C 66, 034604 (2002)

    ADS  Google Scholar 

  50. I.S. Shapiro, Nucl. Phys. 61, 353 (1968)

    Google Scholar 

  51. E.I. Dolinsky, P.O. Dzhamalov, A.M. Mukhamedzhanov, Nucl. Phys. A 202, 97 (1973)

    ADS  Google Scholar 

  52. L. Lamia et al., Phys. Rev. C 85, 025805 (2012)

    ADS  Google Scholar 

  53. A.S. Davydov, Teoria del Nucleo Atomico, Zanichelli Bologna (1966)

  54. E. Segré, Nuclei and Particles (Benjamin-Cummings Pub Co, Menlo Park, 1977)

    Google Scholar 

  55. R.J. Adler et al., Phys. Rev. C 16, 3 (1977)

    Google Scholar 

  56. V.A. Babenko, Phys. At. Nuclei 74, 352–357 (2011)

    ADS  Google Scholar 

  57. R. Evans, The Atomic Nucleus (McGraw-Hill, New York, 1969)

    MATH  Google Scholar 

  58. I.S. Shapir, in Interaction of High-Energy Particles and Nuclei. International School of Physics Enrico Fermi, Course 38 (Academic Press, New York, 1967), p. 210

  59. I.S. Shapiro, Sov. Phys. Uspekhii 10, 515 (1968)

    ADS  Google Scholar 

  60. M. La Cognata et al., Astron. Phys. J. 708, 796 (2010)

    ADS  Google Scholar 

  61. M.R. Mumpowe et al., Prog. Part. Nucl. Phys. 86, 86 (2016)

    ADS  Google Scholar 

  62. D. Watson et al., Nature 574, 497 (2019)

    ADS  Google Scholar 

  63. A. Chieffi, M. Limongi, Astrophys. J. 764, 21 (2013)

    ADS  Google Scholar 

  64. T. Sasaqui et al., Astrophys. J. 634, 1173 (2005)

    ADS  Google Scholar 

  65. G.G. Rapisarda et al., J. Phys. Conf. Ser. 703, 012024 (2016)

    Google Scholar 

  66. S. Hayakawa et al., EPJ Web Conf. 117, 09013 (2016)

    Google Scholar 

  67. E. Koshchiy et al., Nucl. Instrum. Methods Phys. Res. A 957, 21 (2020)

    Google Scholar 

  68. S. Typel, private communication

  69. D.C. Rafferty et al., Phys. Rev. C 94, 024607 (2016)

    ADS  Google Scholar 

Download references

Acknowledgements

The author acknowledge “Programma ricerca di ateneo UNICT 2020-22 linea2” and “Starting grant 2020” of University of Catania. C.A.B. acknowledges support by the U.S. DOE grant DE-FG02-08ER41533 and by funding contributed through the LANL Collaborative Research Program by the Texas A&M System National Laboratory Office and Los Alamos National Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. G. Pizzone.

Additional information

Communicated by Nicolas Alamanos

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pizzone, R.G., Bertulani, C.A., Lamia, L. et al. Clusters and their fundamental role for Trojan Horse Method. Eur. Phys. J. A 56, 283 (2020). https://doi.org/10.1140/epja/s10050-020-00285-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00285-8

Navigation