Skip to main content

Advertisement

Log in

On spectrally-efficient device-to-device communication with wireless information and power transfer

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

In this paper, the model of cooperative cognitive radio network is used to explore the two-way communications between a pair of unlicensed users by sharing the spectrum of any existing pair of licensed users. The licensed users of the spectrum are considered as primary users (PUs) and the unlicensed users of the spectrum are considered as secondary users (SUs). SUs are able to access the PUs spectrum by serving the relaying action between PU-to-PU communications. SUs are enabled by harvesting the energy from radio frequency signal following the principle of power splitting (PS) scheme of simultaneous wireless information and power transfer protocol. The closed form outage expressions of both PU and SU systems are derived. Analytical results validated through the simulations results. The results are also compared with existing work on two-way SU communications in presence of two-way PU communications. Based on the comparison, it is found that about \({\sim 191\%}\) and \({\sim 656\%}\) performance gains are possible to achieve by using proposed PS protocol in terms of spectrum efficiency and energy efficiency, respectively as compared to similar system using time switching protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Li, Y., Chi, K., Chen, H., Wang, Z., & Zhu, Y. (2018). Narrowband internet of things systems with opportunistic D2D communication. IEEE Internet of Things Journal, 5(3), 1474–1484.

    Article  Google Scholar 

  2. Asadi, A., Wang, Q., & Mancuso, V. (2014). A survey on device-to-device communication in cellular networks. IEEE Communications Surveys & Tutorials, 16(4), 1801–1819.

    Article  Google Scholar 

  3. Ansari, R. I., Chrysostomou, C., Hassan, S. A., Guizani, M., Mumtaz, S., Rodriguez, J., et al. (2018). 5G D2D networks: Techniques, challenges, and future prospects. IEEE Systems Journal, 12(4), 3970–3984.

    Article  Google Scholar 

  4. Gandotra, P., & Jha, R. K. (2016). Device-to-device communication in cellular networks: A survey. Elsevier Journal of Network and Computer Applications, 71, 99–117.

    Article  Google Scholar 

  5. Zhang, L., Liang, Y.-C., & Xiao, M. (2019). Spectrum sharing for internet of things: A survey. IEEE Wireless Communications Journal, 26(3), 132–139. https://doi.org/10.1109/MWC.2018.1800259.

    Article  Google Scholar 

  6. Gandotra, P., Jha, R. K., & Jain, S. (2017). Green communication in next generation cellular networks: A survey. IEEE Access, 5, 11727–11758.

    Article  Google Scholar 

  7. Cao, Y., Jiang, T., & Wang, C. (2015). Cooperative device-to-device communications in cellular networks. IEEE Wireless Communications, 22(3), 124–129.

    Article  Google Scholar 

  8. Mustafa, H. A. U., Imran, M. A., Shakir, M. Z., Imran, A., & Tafazolli, R. (2016). Separation framework: An enabler for cooperative and D2D communication for future 5G networks. IEEE Communications Surveys & Tutorials, 18(1), 419–445.

    Article  Google Scholar 

  9. Han, Y., Pandharipande, A., & Ting, S. H. (2009). Cooperative decode-and-forward relaying for secondary spectrum access. IEEE Transactions on Wireless Communications, 8(10), 4945–4950.

    Article  Google Scholar 

  10. Luo, C., Min, G., Yu, F. R., Chen, M., Yang, L. T., & Leung, V. C. M. (2013). Energy-efficient distributed relay and power control in cognitive radio cooperative communications. IEEE Journal on Selected Areas in Communications, 31(11), 2442–2452.

    Article  Google Scholar 

  11. Krikidis, I., Timotheou, S., Nikolaou, S., Zheng, G., Ng, D. W. K., & Schober, R. (2014). Simultaneous wireless information and power transfer in modern communication systems. IEEE Communications Magazine, 52(11), 104–110.

    Article  Google Scholar 

  12. Nasir, A. A., Zhou, X., Durrani, S., & Kennedy, R. A. (2013). Relaying protocols for wireless energy harvesting and information processing. IEEE Transactions on Wireless Communications, 12(7), 3622–3636.

    Article  Google Scholar 

  13. Ye, J., et al. (2017). Cooperative communications with wireless energy harvesting over Nakagami-m fading channels. IEEE Transactions on Communications, 65(12), 5149–5164.

    Article  Google Scholar 

  14. Chatterjee, S., Maity, S. P., & Acharya, T. (2019). Energy-spectrum efficiency trade-off in energy harvesting cooperative cognitive radio networks. IEEE Transactions on Cognitive Communications and Networking, 5(2), 295–303.

    Article  Google Scholar 

  15. El-Malek, A. H. A., Aboulhassan, M. A., & Abdou, M. A. (2020). Evolutionary computation technique enhancing the performance of cognitive radio networks with energy harvesting. Elsevier Journal of Ad Hoc Networks, 107, 102254.

    Article  Google Scholar 

  16. Wang, S. -L., Chung, W. -H., & Wu, T. -M. (2018). Adaptive power and time usage energy harvesting in cognitive two-way relay networks. In Proceedings of IEEE wireless communications and networking conference (WCNC) (pp. 1–6), Barcelona, Spain.

  17. Singh, S., Modem, S., & Prakriya, S. (2017). Optimization of cognitive two-way networks with energy harvesting relays. IEEE Communications Letters, 21(6), 1381–1384.

    Article  Google Scholar 

  18. Mukherjee, A., Acharya, T., & Khandaker, M. R. A. (2018). Outage analysis for SWIPT-enabled two-way cognitive cooperative communications. IEEE Transactions on Vehicular Technology, 67(9), 9032–9036.

    Article  Google Scholar 

  19. Li, Q., Zhang, Q., & Qin, J. (2016). Beamforming for information and energy cooperation in cognitive non-regenerative two-way relay networks. IEEE Transactions on Wireless Communications, 15(8), 5302–5313.

    Article  Google Scholar 

  20. Gurjar, D. S., Nguyen, H. H., & Tuan, H. D. (2019). Wireless information and power transfer for IoT applications in overlay cognitive radio networks. IEEE Internet of Things Journal, 6(2), 3257–3270.

    Article  Google Scholar 

  21. Ghosh, S., Acharya, T., & Maity, S. P. (2020). On outage analysis in SWIPT enabled bidirectional D2D communications using spectrum sharing in cellular networks. IEEE Transactions on Vehicular Technology, 69(9), 10167–10176.

    Article  Google Scholar 

  22. Fragouli, C., Boudec, J. Y. L., & Widmer, J. (2006). Network coding: An instant primer. ACM SIGCOMM Computer Communication Review, 36(1), 63–68.

    Article  Google Scholar 

  23. Gradshteyn, I. S., & Ryzhik, I. M. (2007). Table of integrals, series, and products (7th ed.). Cambridge: Academic Press.

    Google Scholar 

  24. Nadarajah, S. (2008). A review of results on sums of random variables. Acta Applicandae Mathematicae, 103, 131–140.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sutanu Ghosh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix - A

1.1 Derivation of (24)

$$\begin{aligned}&\mathscr {P}\Bigg ( X_{i2}\le \dfrac{k^{1t} }{b_{si} X_{i1}}-\dfrac{a_{si} X_{i1}}{b_{si}}\Bigg )\\&\quad =\int \limits _0^{\sqrt{\dfrac{k^{1t}}{a_{si}}}} {\exp }(-{x_{i1}}) \Big \{\int \limits _{0}^{\dfrac{k^{1t}}{b_{si} x_{i1}}-\dfrac{a_{si} x_{i1}}{b_{si}}} {\exp }(-{x_{i2}})dx_{i2}\Big \}dx_{i1}\\&\quad = \int \limits _0^{\sqrt{\dfrac{k^{1t}}{a_{si}}}} {\exp }(-{x_{i1}}) \Big (1- \exp \Big [-\dfrac{k^{1t}}{b_{si} x_{i1}}+\dfrac{a_{si} x_{i1}}{b_{si}}\Big ]\Big )dx_{11} \end{aligned}$$

By using Taylor Series Expansion, it can be written as follows,

$$\begin{aligned}&=1-\exp \bigg (-\sqrt{\dfrac{k^{1t} }{a_{si}}}\bigg )\nonumber \\&\quad -\sum _{l=0}^{\infty } \dfrac{(-1)^l}{l! (2t_l-l+1)} \sum _{t_l=0}^{l}{{l}\atopwithdelims (){t_l}} {\Big (\dfrac{k^{1t}}{b_{si}}\Big )}^{l-t_l}\nonumber \\&\quad \Bigg ({1-\dfrac{a_{si}}{b_{si}}}\Bigg )^{t_l} \Bigg (\sqrt{\dfrac{k^{1t} }{a_{si}}}\Bigg )^{2t_l-l+1} \end{aligned}$$
(A.1)

Appendix - B

1.1 Derivation of (28)

$$\begin{aligned} \mathscr {P}( R_{SU_p}^{(t)}\ge R_{ts})=\mathscr {P}\Big ( Z\ge \dfrac{u_3}{c_s (a_{si} X_{i1} +b_{si} X_{i2})}\Big ) \end{aligned}$$
(B.1)

Let, \(X_u = (a_{si} X_{i1} +b_{si} X_{i2})\). Then the PDF of \(X_u\) is given by [24],

$$\begin{aligned} f_{X_u}(x_u) = {\left\{ \begin{array}{ll} \frac{1}{a_{si}-b_{si}}\Big [\exp \Big ({-\frac{x_u}{a_{si}}}\Big )-\exp \Big ({-\frac{x_u}{b_{si}}}\Big )\Big ],\quad a_{si} \ne b_{si}\\ \frac{x_u}{a_{si} b_{si}}\exp \Big (-\frac{x_u}{a_{si}}\Big ), \quad a_{si} = b_{si} .\\ \end{array}\right. } \end{aligned}$$
(B.2)

The solution of product of two random variables can be obtained as follows [23, Sec. 3.324.1, 3.471.9].

$$\begin{aligned}&\mathscr {P}\bigg \lbrace Z \ge \frac{u_3}{c_s X_u} \bigg \rbrace = 1 - \mathscr {P}\bigg \lbrace Z < \frac{u_3}{c_s X_u} \bigg \rbrace \nonumber \\&\quad = \int _{0}^{\infty }\exp \bigg ({-\frac{u_3}{c_s x_u}}\bigg )f_{X_u}(x_u)dx_u\nonumber \\&\quad ={\left\{ \begin{array}{ll} \frac{1}{a_{si}-b_{si}}\int _{0}^{\infty }\exp \Big ({-\frac{u_3}{c_s x_u}}\Big )\Big [\exp \Big ({-\frac{x_u}{a_{si}}}\Big )-\exp \Big ({-\frac{x_u}{b_{si}}}\Big )\Big ] dx_u ;\\ { \quad \text {for},} \quad a_{si}\ne b_{si} \\ \int _{0}^{\infty }\exp \Big ({-\frac{u_3}{c_s x_u}}\Big )\frac{x_u}{a_{si} b_{si}}\exp \Big (-\frac{x_u}{a_{si}}\Big ) dx_u ;{\text {for},} a_{si} = b_{si}\\ \end{array}\right. }\nonumber \\&\quad ={\left\{ \begin{array}{ll}\dfrac{2 \frac{\sqrt{u_3}}{\sqrt{c_s}} }{(a_{si}-b_{si})}\Bigg \{\sqrt{{a_{si}}} \mathscr {K}_1\bigg (2\sqrt{\frac{u_3}{c_s a_{si}}}\bigg )-\sqrt{{ b_{si}}} \mathscr {K}_1\bigg (2\sqrt{\frac{u_3}{c_s b_{si}}}\bigg )\Bigg \};\\ { \quad \text {for},} \quad a_{si}\ne b_{si} \\ \dfrac{2 u_3}{c_s a_{si}}\mathscr {K}_2\bigg (2\sqrt{\frac{u_3}{c_s b_{si}}}\bigg ); {\text {for},} \quad a_{si} = b_{si}\\ \end{array}\right. }\nonumber \\ \end{aligned}$$
(B.3)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, S. On spectrally-efficient device-to-device communication with wireless information and power transfer. Telecommun Syst 76, 569–578 (2021). https://doi.org/10.1007/s11235-020-00737-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-020-00737-y

Keywords

Navigation