Skip to main content
Log in

Assessing the robustness of decentralized gathering: a multi-agent approach on micro-biological systems

  • Published:
Swarm Intelligence Aims and scope Submit manuscript

Abstract

Adopting a multi-agent systems paradigm, we developed, tested and exploited a computational testbed that simulates gathering features of the social amoeba Dictyostelium discoideum. It features a tailored design and implementation to manage discrete simulations with autonomous agents on a microscopic scale, thus focusing on their social behavior and mutual interactions. Hence, we could assess the behavioral conditions under which decentralized gathering could occur. We investigated the dependence of the model dynamics on the main physical variables, namely density and number of amoebas, gaining indications that the process strongly depends on both. This result integrates previous researches, where density is identified as the sole relevant variable. We determined a high-density and high-numerosity region where assuming a scale-free behavior is safe. We also estimated the systematic uncertainties arising from a number of amoebas off the scale-free region, when coping with limited computational resources. Finally, we probed the robustness of the simulated gathering process against both extrinsic and intrinsic noise sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Code availability

The software code for the Multi-Agent-System model adopted for the simulations described in this paper is freely accessible at the following GitHub repository: https://github.com/daniele-proverbio/amoeba. Statistical analysis was performed by means of Python open libraries.

References

  • Alcantara, F., & Monk, M. (1974). Signal propagation during aggregation in the slime mould Dictyostelium discoideum. Microbiology, 85(2), 321–334.

    Google Scholar 

  • Baker, R., Gaffney, E., & Maini, P. (2008). PDEs for self-organization in cellular and developmental biology. Nonlinearity, 21(11), 251–290.

    MathSciNet  MATH  Google Scholar 

  • Bhalla, U. S., & Iyengar, R. (1999). Emergent properties of networks of biological signaling pathways. Science, 283(5400), 381–387.

    Google Scholar 

  • Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm intelligence: From natural to artificial systems. Oxford: Oxford University Press.

    MATH  Google Scholar 

  • Bonner, J. (1970). Induction of stalk cell differentiation by cyclic AMP in the cellular slime mold Dictyostelium discoideum. Proceedings of the National Academy of Sciences, 65(1), 110–113.

    Google Scholar 

  • Bonner, J. T. (1998). A way of following individual cells in the migrating slugs of Dictyostelium discoideum. Proceedings of the National Academy of Sciences, 95(16), 9355–9359.

    Google Scholar 

  • Bonner, J., & Savage, L. (1947). Evidence for the formation of cell aggregates by chemotaxis in the development of the slime mold Dictyostelium discoideum. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 106(1), 1–26.

    Google Scholar 

  • Borshchev, A., & Filippov, A. (2004). From system dynamics and discrete event to practical agent based modeling: Reasons, techniques, tools. In Proceedings of the 22nd international conference of the system dynamics society, pp. 959–966.

  • Bruno in Columbus. (2018). Dictyostelium aggregation. Retrieved from https://bit.ly/2SlZqy2.

  • Camazine, S., Deneubourg, J.-L., Franks, N., Sneyd, J., Bonabeau, E., & Theraula, G. (2003). Self-organization in biological systems. Princeton: Princeton University Press.

    MATH  Google Scholar 

  • Cantrell, R., & Cosner, C. (2004). Spatial ecology via reaction–diffusion equations. New York: Wiley.

    MATH  Google Scholar 

  • Coates, J., & Harwood, A. (2001). Cell–cell adhesion and signal transduction during Dictyostelium development. Journal of Cell Science, 114(24), 4349–4358.

    Google Scholar 

  • Dallon, J., Dalton, B., & Malani, C. (2011). Understanding streaming in Dictyostelium discoideum: Theory versus experiments. Bulletin of Mathematical Biology, 73(7), 1603–1626.

    MathSciNet  MATH  Google Scholar 

  • Dallon, J., & Othmer, H. (1997). A discrete cell model with adaptive signalling for aggregation of Dictyostelium discoideum. Philosophical Transactions of the Royal Society B: Biological Sciences, 352(1351), 391–417.

    Google Scholar 

  • Darmon, M., Brachet, P., & Da Silva, L. (1975). Chemotactic signals induce cell differentiation in Dictyostelium discoideum. Proceedings of the National Academy of Sciences, 72(8), 3163–3166.

    Google Scholar 

  • Devreotes, P. (1989). Dictyostelium discoideum: A model system for cell–cell interactions in development. Science, 245(4922), 1054–1058.

    Google Scholar 

  • Di Marzo Serugendo, G., Gleizes, M.-P., & Karageorgos, A. (2011). Self-organising software: From natural to artificial adaptation. Berlin: Springer.

    MATH  Google Scholar 

  • Di Criscio, S. (2011). A simple mechanism for complex social behavior. Retrieved from https://bit.ly/2oMYNBD.

  • Dorigo, M., Birattari, M., Blum, C., Clerc, M., Stützle, T., & Winfield, A. (2008). In Proceedings of ant colony optimization and swarm intelligence: 6th international conference, ANTS 2008, Brussels, Belgium, September 22–24, 2008, Vol. 5217, Springer.

  • Drasdo, D., Hoehme, S., & Block, M. (2007). On the role of physics in the growth and pattern formation of multi-cellular systems: What can we learn from individual-cell based models? Journal of Statistical Physics, 128(1–2), 287.

    MathSciNet  MATH  Google Scholar 

  • Duan, W., Ding, H., Zhu, W., Srinivasan, K., Otterson, G., & Villalona-Calero, M. (2002). cAMP binding protein assay for widespread use in cell signaling studies. Biotechniques, 33(1), 66–72.

    Google Scholar 

  • Durston, A. (2013). Dislocation is a developmental mechanism in Dictyostelium and vertebrates. Proceedings of the National Academy of Sciences, 110(49), 19826–19831.

    Google Scholar 

  • Elliott, C., Stinner, B., & Venkataraman, C. (2012). Modelling cell motility and chemotaxis with evolving surface finite elements. Journal of The Royal Society Interface, rsif20120276.

  • Fates, N. (2008). Gathering agents on a lattice by coupling reaction–diffusion and chemotaxis. inria-00132266v4.

  • Fey, P., Kowal, A., Gaudet, P., Pilcher, K., & Chisholm, R. (2007). Protocols for growth and development of Dictyostelium discoideum. Nature Protocols, 2(6), 1307.

    Google Scholar 

  • Futrelle, R., Traut, J., & McKee, W. (1982). Cell behavior in Dictyostelium discoideum: Preaggregation response to localized cyclic AMP pulses. The Journal of Cell Biology, 92(3), 807–821.

    Google Scholar 

  • Galle, J., Hoffmann, M., & Aust, G. (2009). From single cells to tissue architecture—A bottom-up approach to modelling the spatio-temporal organisation of complex multi-cellular systems. Journal of Mathematical Biology, 58(1–2), 261.

    MathSciNet  MATH  Google Scholar 

  • Gierer, A., & Meinhardt, H. (1972). A theory of biological pattern formation. Kybernetik, 12(1), 30–39.

    MATH  Google Scholar 

  • Grignard, A., Taillandier, P., Gaudou, B., D.A., V., Huynh, N., & Drogoul, A. (2013). GAMA 1.6: Advancing the art of complex agent-based modeling and simulation. In International conference on principles and practice of multi-agent systems, Springer, pp. 117–131.

  • Gross, J., Peacey, M., & Trevan, D. (1976). Signal emission and signal propagation during early aggregation in Dictyostelium discoideum. Journal of Cell Science, 22(3), 645–656.

    Google Scholar 

  • Grüne Yanoff, T., & Weirich, P. (2010). The philosophy and epistemology of simulation: A review. Simulation & Gaming, 41(1), 20–50.

    Google Scholar 

  • Hart, E., Timmis, J., Mitchell, P., Nakano, T., & Dabri, F. (2012). Bio-inspired models of network, information, and computing systems: 6th international ICST conference, BIONETICS 2011, York, UK, December 5–6, 2011, Revised Selected Papers, Springer.

  • Iglesias, P., & Ingalls, B. (2010). Control theory and systems biology. Boston: MIT Press.

    MATH  Google Scholar 

  • Jowhar, D., & Janetopoulos, C. (2013). The Chemotactic Compass. In Dictyostelids, Springer, pp. 71–87.

  • Kennedy, R., Ropella, G., & Hunt, C. (2016). A cell-centered, agent-based framework that enables flexible environment granularities. Theoretical Biology and Medical Modelling, 13(1), 4.

    Google Scholar 

  • Kessin, R. (2001). Dictyostelium: Evolution, cell biology, and the development of multicellularity. Cambridge: Cambridge University Press.

    Google Scholar 

  • Kessin, R. (2003). Cell motility: Making streams. Nature, 422(6931), 481.

    Google Scholar 

  • Khan, S., Makkena, R., McGeary, F., Decker, K., Gillis, W., & Schmidt, C. (2003). A multi-agent system for the quantitative simulation of biological networks. In Proceedings of the second international joint conference on Autonomous agents and multiagent systems, ACM, pp. 385–392.

  • Kim, J., & Bates, D. (2010). Robustness of oscillations in biological systems. In P. Iglesias (Eds.), Control theory and systems biology, Chapter 11, MIT Press, Boston, pp. 225–243.

  • Kim, J., Heslop-Harrison, P., Postlethwaite, I., & Bates, D. (2007). Stochastic noise and synchronisation during Dictyostelium aggregation make cAMP oscillations robust. PLoS Computational Biology, 3(11), e218.

    MathSciNet  Google Scholar 

  • Kitano, H. (2004). Biological robustness. Nature Reviews Genetics, 5(11), 826.

    Google Scholar 

  • Kitano, H. (2007). Towards a theory of biological robustness. Molecular Systems Biology, 3(1), 137.

    Google Scholar 

  • MacKay, S. (1978). Computer simulation of aggregation in Dictyostelium discoideum. Journal of Cell Science, 33(1), 1–16.

    Google Scholar 

  • McCann, C. P., Kriebel, P. W., Parent, C. A., & Losert, W. (2010). Cell speed, persistence and information transmission during signal relay and collective migration. Journal of Cell Science, 123(10), 1724–1731.

    Google Scholar 

  • Morris, H., Taylor, G. W., Masento, M. S., Jermyn, K. A., & Kay, R. R. (1987). Chemical structure of the morphogen differentiation inducing factor from Dictyostelium discoideum. Nature, 328(6133), 811.

    Google Scholar 

  • Nagano, S. (1998). Diffusion-assisted aggregation and synchronization in Dictyostelium discoideum. Physical Review Letters, 80(21), 4826.

    Google Scholar 

  • Nagano, S. (2000). Modeling the model organism Dictyostelium discoideum. Development, Growth & Differentiation, 42(6), 541–550.

    Google Scholar 

  • Nanjundiah, V. (1988). Periodic stimuli are more successful than randomly spaced ones for inducing development in Dictyostelium discoideum. Bioscience Reports, 8(6), 571–577.

    Google Scholar 

  • O’day, D., & Keszei, A. (2012). Signalling and sex in the social amoebozoans. Biological Reviews, 87(2), 313–329.

    Google Scholar 

  • Oss, C., Panfilov, A., Hogeweg, P., Siegert, F., & Weijer, C. (1996). Spatial pattern formation during aggregation of the slime mould Dictyostelium discoideum. Journal of Theoretical Biology, 181, 203–213.

    Google Scholar 

  • Othmer, H., & Schaap, P. (1998). Oscillatory cAMP signaling in the development of Dictyostelium discoideum. Comments on Theoretical Biology, 5, 175–282.

    Google Scholar 

  • Palsson, E., & Othmer, H. (2000). A model for individual and collective cell movement in Dictyostelium discoideum. Proceedings of the National Academy of Sciences, 97(19), 10448–10453.

    Google Scholar 

  • Parhizkar, M., & Di Marzo Serugendo, G. (2018). Agent-based models for first-and second-order emergent collective behaviours of social amoeba Dictyostelium discoideum aggregation and migration phases. Artificial Life and Robotics, 1–10.

  • Pineda, M., Weijer, C. J., & Eftimie, R. (2015). Modelling cell movement, cell differentiation, cell sorting and proportion regulation in Dictyostelium discoideum aggregations. Journal of Theoretical Biology, 370, 135–150.

    MathSciNet  MATH  Google Scholar 

  • Purcell, E. (1977). Life at low Reynolds number. American Journal of Physics, 45(1), 3–11.

    Google Scholar 

  • Robertson, A., Drage, D., & Cohen, M. (1972). Control of aggregation in Dictyostelium discoideum by an external periodic pulse of cyclic adenosine monophosphate. Science, 175(4019), 333–335.

    Google Scholar 

  • Romeralo, M., Baldauf, S., & Escalante, R. (2013). Dictyostelids: Evolution, genomics and cell biology. Berlin: Springer.

    Google Scholar 

  • Saetzler, K., Sonnenschein, C., & Soto, A. (2011). Systems biology beyond networks: generating order from disorder through self-organization. In Seminars in cancer biology, Vol. 21, Elsevier, pp. 165–174.

  • Savill, N., & Hogeweg, P. (1997). Modelling morphogenesis: From single cells to crawling slugs. Journal of Theoretical Biology, 184(3), 229–235.

    Google Scholar 

  • Singhal, A., Eunice, E., & James, D. A. (2006). An effective communication framework for inter-agent communication in a complex adaptive system simulation with application to biology. PhD thesis, Virginia Polytechnic Institute and State University.

  • Stelling, J., Sauer, U., Szallasi, Z., Doyle, F, I. I. I., & Doyle, J. (2004). Robustness of cellular functions. Cell, 118(6), 675–685.

    Google Scholar 

  • Strmecki, L., Greene, D., & Pears, C. (2005). Developmental decisions in Dictyostelium discoideum. Developmental Biology, 284(1), 25–36.

    Google Scholar 

  • Sugihara, K., & Suzuki, I. (1990). Distributed motion coordination of multiple mobile robots. In Proceedings of intelligent control, 5th IEEE international symposium, IEEE, pp. 138–143.

  • Van Haastert, P., & Postma, M. (2007). Biased random walk by stochastic fluctuations of chemoattractant-receptor interactions at the lower limit of detection. Biophysical Journal, 93(5), 1787–1796.

    Google Scholar 

  • Van Haastert, P., Van der Meer, R., & Konijn, T. M. (1981). Evidence that the rate of association of adenosine 3’, 5’-monophosphate to its chemotactic receptor induces phosphodiesterase activity in Dictyostelium discoideum. Journal of Bacteriology, 147(1), 170–175.

    Google Scholar 

  • Vidal-Henriquez, E., & Gholami, A. (2019). Spontaneous center formation in Dictyostelium discoideum. Scientific Reports, 9(1), 1–11.

    Google Scholar 

  • Vlassopoulos, N., & Fates, N. (2011). Clustering behavior of a bio-inspired decentralized aggregation scheme. In European conference on artificial life-ECAL 2011, MIT Press, pp. 836–837.

  • Wang, H., Wang, K., & Sircar, T. (2010). A direct O (N log2 N) finite difference method for fractional diffusion equations. Journal of Computational Physics, 229(21), 8095–8104.

    MathSciNet  MATH  Google Scholar 

  • Willard, S., & Devreotes, P. (2006). Signaling pathways mediating chemotaxis in the social amoeba, Dictyostelium discoideum. European Journal of Cell Biology, 85(9–10), 897–904.

    Google Scholar 

  • Williams, J. (2010). Dictyostelium finds new roles to model. Genetics, 185(3), 717–726.

    Google Scholar 

  • Wooldridge, M. (2002). An introduction to multiagent systems. New York: Wiley.

    Google Scholar 

  • Zeghida, D., Meslati, D., & Bounour, N. (2018). Bio-IR-M: A multi-paradigm modelling for bio-inspired multi-agent systems. Informatica, 42(3), 51–466.

    Google Scholar 

Download references

Acknowledgements

This research has been possible since the authors gained access to the INFN Computing Farm in Turin. The authors would like to thank Prof. P. Terna, Dr. J. Markdahl, the anonymous reviewers and the editors for valuable feedback that improved the manuscript quality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Proverbio.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 11108 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Proverbio, D., Gallo, L., Passalacqua, B. et al. Assessing the robustness of decentralized gathering: a multi-agent approach on micro-biological systems. Swarm Intell 14, 313–331 (2020). https://doi.org/10.1007/s11721-020-00186-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11721-020-00186-y

Keywords

Navigation