Skip to main content
Log in

Forced Vibration Analysis in Axisymmetric Functionally Graded Viscothermoelastic Hollow Cylinder Under Dynamic Pressure

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section A: Physical Sciences Aims and scope Submit manuscript

Abstract

The forced vibrations of axisymmetric inhomogenous isotropic viscothermoelastic hollow cylinder under periodic dynamic pressure have been studied. The material was taken inhomogenous due to easy exponent law in radial direction. By applying time harmonics variation technique, the partial differential equations were converted into ordinary differential equations. These ordinary differential equations were solved by applying series solution of matrix Fröbenius method analytically to represent displacement, temperature and stresses. Numerically simulated outcomes were presented graphically to express the effect of functionally graded material disk for different values of grading parameter. With the increase in value of grading index, variation of field functions go on decreasing. The variation of field functions show high variation in homogenous materials in contrast to low variation in inhomogeneous materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chen WT (1966) On some problems in spherically isotropic elastic materials. J Appl Mech 33:539–546

    Article  Google Scholar 

  2. Honarvar F, Sinclair AN (1996) Acoustic wave scattering from transversely isotropic cylinders. J Acoust Soc Am 100:57–63

    Article  ADS  Google Scholar 

  3. Dai H-L, Rao Y-N, Jiang H-J (2013) Thermoelastic dynamic response for a long functionally graded hollow cylinder. J Compos Mater 47:315–325

    Article  Google Scholar 

  4. Keles I, Tutuncu N (2011) Exact analysis of axisymmetric dynamic response of functionally graded cylinders (or disks) and spheres. J Appl Mech. https://doi.org/10.1115/1.4003914

    Article  Google Scholar 

  5. Othman MIA, Ezzat MA, Zaki SA, El-Karamany AS (2002) Generalized thermo-viscoelastic plane waves with two relaxation times. Int J Eng Sci 40:1329–1347

    Article  MathSciNet  Google Scholar 

  6. Flügge W (1975) Viscoelasticity. Springer, Berlin

    Book  Google Scholar 

  7. Hunter C, Sneddon I, Hill R (1960) Visco-elastic waves in progress in solid mechanics. Wiley, New York

    Google Scholar 

  8. Lord HW, Shulman Y (1967) A generalized dynamical theory of thermoelasticity. J Mech Phys Solids 15:299–309

    Article  ADS  Google Scholar 

  9. Green AE, Lindsay KA (1972) Thermoelasticity. J Elast 2:1–7

    Article  Google Scholar 

  10. Sharma JN, Othman MIA (2007) Effect of rotation on generalized thermo-viscoelastic Rayleigh–Lamb waves. Int J Solids Struct 44:4243–4255

    Article  Google Scholar 

  11. Sharma JN, Singh H, Sharma YD (2011) Modeling of thermoelastic damping and frequency shift of vibrations in a transversely isotropic solid cylinder. Multidiscipl Model Mater Struct 7:245–265

    Article  Google Scholar 

  12. Sharma JN, Kumari N, Sharma KK (2013) Diffusion in a generalized thermoelastic solid in an infinite body with cylindrical cavity. Proc Natl Acad Sci India Sect A 83:353–364

    Article  MathSciNet  Google Scholar 

  13. Sharma JN, Sharma DK, Dhaliwal SS (2012) Three-dimensional free vibration analysis of a viscothermoelastic hollow sphere. Open J Acoust 2:12–24

    Article  ADS  Google Scholar 

  14. Sharma JN, Sharma DK, Dhaliwal SS (2013) Free vibration analysis of a rigidly fixed viscothermoelastic hollow sphere. Indian J Pure Appl Math 44:559–586

    Article  MathSciNet  Google Scholar 

  15. Sharma JN, Sharma PK, Mishra KC (2014) Analysis of free vibrations in axisymmetric functionally graded thermoelastic cylinders. Acta Mech 225:1581–1594

    Article  MathSciNet  Google Scholar 

  16. Sharma DK, Sharma JN, Dhaliwal SS, Walia V (2014) Vibration analysis of axisymmetric functionally graded viscothermoelastic spheres. Acta Mech Sin 30:100–111

    Article  MathSciNet  ADS  Google Scholar 

  17. Xin L, Dui G, Yang S, Zhang J (2014) An elasticity solution for functionally graded thick walled tube subjected to internal pressure. Int J Mech Sci 89:344–349

    Article  Google Scholar 

  18. Xin L, Dui G, Yang S (2015) Solution for behavior of a functionally graded thick-walled tube subjected to mechanical and thermal loads. Int J Mech Sci 98:70–79

    Article  Google Scholar 

  19. Tripathi JJ, Kedar GD, Deshmukh KC (2015) Generalized thermoelastic diffusion problem in a thick circular plate with axisymmetric heat supply. Acta Mech 226:2121–2134

    Article  MathSciNet  Google Scholar 

  20. Khanna A, Kaur N (2016) Theoretical study on vibration of non-homogeneous tapered visco-elastic rectangular plate. Proc Natl Acad Sci India Sect A 86:259–266

    Article  MathSciNet  Google Scholar 

  21. Sharma JN, Sharma PK, Mishra KC (2016) Dynamic response of functionally graded cylinders due to time-dependent heat flux. Meccanica 51:139–154

    Article  MathSciNet  Google Scholar 

  22. Xin L, Lu W, Yang S, Ju C, Dui G (2016) Influence of linear work hardening on the elastic–plastic behavior of a functionally graded thick walled tube. Acta Mech 227(8):2305–2321

    Article  MathSciNet  Google Scholar 

  23. Sharma DK (2016) Free vibrations of homogenous isotropic viscothermoelastic spherical curved plates. J Appl Sci Eng 19:135–148

    Google Scholar 

  24. Sharma N (2017) Circumferential waves in transradially isotropic thermoelastic spherical curved plates. Proc Natl Acad Sci India Sect A 87:57–72

    Article  MathSciNet  Google Scholar 

  25. Xin L, Dui G, Pan Li Y (2018) A revisiting of the elasticity solution for a transversely isotropic functionally graded thick-walled tube on the Mori–Tanaka method. Acta Mech 229(6):2703–2717

    Article  Google Scholar 

  26. Tomantschger KW (2002) Series solutions of coupled differential equations with one regular singular point. J Comput Appl Math 140:773–783

    Article  MathSciNet  ADS  Google Scholar 

  27. Cullen CG (1990) Matrices and linear transformations, 2nd edn. Dover Publications, New York

    MATH  Google Scholar 

  28. Pierce AD (1981) Acoustics: an introduction to its physical principles and applications. McGraw-Hill Book Co, New York

    Google Scholar 

  29. Dhaliwal RS, Singh A (1980) Dynamic coupled thermo elasticity. Hindustan Publishing Corporation, New Delhi

    Google Scholar 

  30. Neuringer JL (1978) The Frobenius method for complex roots of the indicial equation. Int J Math Educ Sci Technol 9:71–77

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinesh Kumar Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

$$ g_{1} (s + 1) = \left( {\begin{array}{*{20}c} {(s + 1)^{2} - \eta^{2} } & 0 \\ 0 & {\left( {(s + 1)^{2} - \frac{{\gamma^{2} }}{4}} \right)} \\ \end{array} } \right); g_{2} (s + 1) = \left( {\begin{array}{*{20}c} 0 & {A^{*} \left( {s + 1 + \frac{\gamma }{2}} \right)} \\ {B^{*} \left( {s + 1 + \frac{2 - \gamma }{2}} \right)} & 0 \\ \end{array} } \right); $$
(55)
$$ e_{12}^{1} (s_{j} ) = A^{*} \frac{{\left( {s_{j} + \frac{2 + \gamma }{2}} \right)}}{{(s + 1)^{2} - \eta^{2} }},\quad e_{21}^{1} (s_{j} ) = B^{*} \frac{{\left( {s_{j} + \frac{4 - \gamma }{2}} \right)}}{{(s + 1)^{2} - \frac{{\gamma^{2} }}{4}}};\quad j = 1,2,3,4.; $$
(56)
$$ g_{11}^{k} (s_{j} ) = \frac{i\varOmega }{{\tilde{\delta }_{0} \left( {(s_{j} + k + 2)^{2} - \eta^{2} } \right)}}, g_{22}^{k} (s_{j} ) = \frac{{\varOmega^{*} \varOmega^{2} \tilde{\tau }_{0} }}{{\left( {(s_{j} + k + 2)^{2} - \frac{{\gamma^{2} }}{4}} \right)}}; $$
(57)
$$ g_{12}^{k} (s_{j} ) = \frac{{A^{*} \left( {s_{j} + k + \frac{2 + \gamma }{2}} \right)}}{{\left( {(s_{j} + k + 2)^{2} - \eta^{2} } \right)}}, g_{21}^{k} (s_{j} ) = \frac{{B^{*} \left( {s_{j} + k + \frac{4 - \gamma }{2}} \right)}}{{\left( {(s_{j} + k + 2)^{2} - \frac{{\gamma^{2} }}{4}} \right)}}; $$
(58)
$$ e_{11}^{2} (s_{j} ) = g_{12}^{0} (s_{j} )\quad e_{21}^{1} (s_{j} ) - g_{11}^{0} (s_{j} ),\quad e_{22}^{2} (s_{j} ) = g_{21}^{0} (s_{j} )\quad e_{12}^{1} (s_{j} ) - g_{22}^{0} (s_{j} ) $$
(59)
$$ e_{12}^{3} (s_{j} ) = g_{12}^{1} (s_{j} )\quad e_{22}^{2} (s_{j} ) - g_{11}^{1} (s_{j} )\quad e_{12}^{1} (s_{j} ),\quad e_{21}^{3} (s_{j} ) = g_{21}^{1} (s_{j} )\quad e_{11}^{2} (s_{j} ) - g_{22}^{1} (s_{j} )\quad e_{21}^{1} (s_{j} ) $$
(60)
$$ e_{11}^{4} (s_{j} ) = g_{12}^{2} (s_{j} )\quad e_{21}^{3} (s_{j} ) - g_{11}^{2} (s_{j} )\quad e_{11}^{2} (s_{j} ),\quad e_{22}^{4} (s_{j} ) = g_{21}^{2} (s_{j} )\quad e_{12}^{3} (s_{j} ) - g_{22}^{2} (s_{j} )\quad e_{21}^{2} (s_{j} ) $$
(61)
$$ e_{11}^{2k} (s_{j} ) = g_{12}^{2k - 2} (s_{j} )\quad e_{21}^{2k - 1} (s_{j} ) - g_{11}^{2k - 2} (s_{j} )\quad e_{11}^{2k - 2} (s_{j} ); $$
(62)
$$ e_{22}^{2k} (s_{j} ) = g_{21}^{2k - 2} (s_{j} )\quad e_{12}^{2k - 1} (s_{j} ) - g_{22}^{2k - 1} (s_{j} )\quad e_{21}^{2k - 1} (s_{j} ); $$
(63)
$$ e_{12}^{2k + 1} (s_{j} ) = g_{12}^{2k - 1} (s_{j} )\quad e_{22}^{2k} (s_{j} ) - g_{11}^{2k - 1} (s_{j} )\quad e_{12}^{2k - 1} (s_{j} ); $$
(64)
$$ e_{21}^{2k + 1} (s_{j} ) = g_{21}^{2k - 1} (s_{j} )\quad e_{11}^{2k} (s_{j} ) - g_{22}^{2k - 1} (s_{j} )\quad e_{21}^{2k - 1} (s_{j} ) $$
(65)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, D.K., Mittal, H. & Sharma, S.R. Forced Vibration Analysis in Axisymmetric Functionally Graded Viscothermoelastic Hollow Cylinder Under Dynamic Pressure. Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 90, 809–818 (2020). https://doi.org/10.1007/s40010-019-00634-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40010-019-00634-3

Keywords

Navigation