Skip to main content
Log in

Triskelia scotlandica, an enigmatic Rhynie chert microfossil revisited

  • Research Paper
  • Published:
PalZ Aims and scope Submit manuscript

Abstract

The enigmatic microfossil Triskelia scotlandica from the Lower Devonian Rhynie chert is an acritarch-like, usually spheroidal to ovoid vesicle with a surface ornamentation comprised of isolated triradiate and meandering, high membranous ridges. The form has been formally described based on dispersed specimens preserved inside the remains of a land plant axis, and interpreted as the resting stage of a microscopic alga. Unusual microbial coatings on land plant axes from the Rhynie chert have recently yielded > 300 additional specimens of T. scotlandica, many of which occur in situ in prominent swellings of fungal hyphae. This discovery is a strong evidence that T. scotlandica is not algal, but rather fungal or fungus-like in nature. The swellings might be oogonia of a representative of the Oomycota (e.g., Saprolegniales), and T. scotlandica accordingly an ornamented oospore. However, specimens with a discharge tube suggest that T. scotlandica is more likely a zoosporangium or resting spore stage of an endoparasite, perhaps with affinities to the holocarpic Oomycota (e.g., Olpidiopsis), Cryptomycota (e.g., Rozella), or zoosporic fungi (e.g., Olpidium), in which case the hyphal swellings would be either dilatations resulting from the expansion of the parasite inside, or a host response (hypertrophy). The affinity of T. scotlandica remains unresolved, due in part to the uncertain diagnostic value of the surface ornamentation, and because no other stages of the life history of this organism are known. Nevertheless, the new specimens expand our knowledge of the microbial interactions that existed in early terrestrial ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barrett, J.T. 1912. Development and sexuality of some species of Olpidiopsis, (Cornu) Fischer. Annals of Botany 26: 209–238.

    Google Scholar 

  • Blackwell, W.H., P.M. Letcher, and M.J. Powell. 2018. Notes on the morphology and taxonomy of Micromyces (Synchytriaceae, Chytridiomycota), with special attention to M. longispinosus, M. grandis, M. furcatus and M. ovalis. Phytologia 100: 51–61.

    Google Scholar 

  • Bomfleur, B., H. Kerp, T.N. Taylor, Ø. Moestrup, and E.L. Taylor. 2012. Triassic leech cocoon from Antarctica contains fossil bell animal. Proceedings of the National Academy of Sciences USA 109: 20971–20974.

    Google Scholar 

  • Bonfante, P. 2019. Symbiosis: algae and fungi move from the past to the funture. eLife 8: e49448.

  • Brown, H.J. 1929. The algal family Vaucheriaceae. Transactions of the American Microscopical Society 48: 86–118.

    Google Scholar 

  • Buaya, A.T., and M. Thines. 2020. An overview on the biology and phylogeny of the early-diverging oomycetes. Philippine Journal of Systematic Biology. https://doi.org/10.26757/pjsb2020a14004.

    Article  Google Scholar 

  • Buaya, A.T., S. Ploch, S. Inaba, and M. Thines. 2019. Holocarpic oomycete parasitoids of red algae are not Olpidiopsis. Fungal Systematics and Evolution 4: 21–31.

    Google Scholar 

  • Butterfield, N.P. 2005. Probable Proterozoic fungi. Paleobiology 31: 165–182.

    Google Scholar 

  • Cáceres, E.J., and D.G. Robinson. 1980. Ultrastructural studies on Sphaeroplea annulina (Chlorophyceae) Vegetative structure and mitosis. Journal of Phycology 16: 313–320.

    Google Scholar 

  • Canter, H.M. 1949. Studies on British chytrids. V. On Olpidium hyalothecae Scherffel and Olpidium utriculiforme Scherffel. Transactions of the British Mycological Society 32: 22–29.

    Google Scholar 

  • Channing, A., and D.E. Wujek. 2010. Preservation of protists within decaying plants from geothermally influenced wetlands of Yellowstone National Park, Wyoming, United States. Palaios 25: 347–355.

    Google Scholar 

  • Choi, Y.J., H.D. Shin, S.G. Hong, and M. Thines. 2007. Morphological and molecular discrimination among Albugo candida materials infecting Capsella bursa-pastoris world-wide. Fungal Diversity 27: 11–34.

    Google Scholar 

  • Choi, Y.J., H.D. Shin, and M. Thines. 2008. Evidence for uncharted biodiversity in the Albugo candida complex, with the description of a new species. Mycological Research 112: 1327–1334.

    Google Scholar 

  • Coker, W.C. 1914. Two new species of water molds. Mycologia 6: 285–302.

    Google Scholar 

  • Dayal, R., and J. Thakur. 1968. Studies in aquatic fungi of Varanasi. III. Observations on some parasitic aquatic Phycomycetes. Sydowia Annales Mycologici 22: 278–283.

    Google Scholar 

  • Rocha, J. de Ribamar de Sousa, J.L. Machado, J. Barros da Silva, O.C. da Trinidade Júnior, L. de Abreu Santos, E.P. Rodrigues, and A.A. Cronemberger. 2018. O gênero Olpidiopsis (Oomycota) no Nordeste do Brasil. Rodriguésia 69: 2035–2053.

  • Dick, M.W. 1960. Aplanopsis spinosa sp. nov. Transactions of the British Mycologial Society 43: 60–64.

    Google Scholar 

  • Dick, M.W. 1969. Morphology and taxonomy of the Oomycetes, with special reference to Saprolegniaceae, Leptomitaceae and Pythiaceae. New Phytologist 68: 751–775.

    Google Scholar 

  • Dick, M.W. 1995. Sexual reproduction in the Peronosporomycetes (chromistan fungi). Canadian Journal of Botany 73 (Supplement 1): S712–S724.

    Google Scholar 

  • Dick, M.W. 2001. Straminipilous fungi. Systematics of the peronosporomycetes including accounts of the marine Straminipilous Protists, the plasmodiophorids and similar organisms. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Dotzler, N., M. Krings, R. Agerer, J. Galtier, and T.N. Taylor. 2008. Combresomyces cornifer gen. sp. nov., an endophytic peronosporomycete in Lepidodendron from the Carboniferous of central France. Mycological Research 112: 1107–1114.

    Google Scholar 

  • Du, Z.Y., K. Zienkiewicz, N. Vande Pol, N.E. Ostrom, C. Benning, and G.M. Bonito. 2019. Algal-fungal symbiosis leads to photosynthetic mycelium. eLife 8: e47815.

  • Edwards, D.S., and A.G. Lyon. 1983. Algae from the Rhynie chert. Botanical Journal of the Linnean Society 86: 37–55.

    Google Scholar 

  • Edwards, D., L. Dolan, and P. Kenrick (eds.). 2018. The Rhynie cherts: our earliest terrestrial ecosystem revisited. Philosophical Transactions of the Royal Society of London B 373: 1–201.

  • Elíades, L.A., M.M. Steciow, and M.G. Cano. 2002. Primer registro para Argentina (Buenos Aires) de Olpidiopsis varians y O. vexans (Lagenidiales, Oomycota). Darwiniana 40: 39–43.

    Google Scholar 

  • Entwisle, T.J. 1988. A monograph of Vaucheria (Vaucheriaceae, Chrysophyta) in south-eastern mainland Australia. Australian Systematic Botany 1: 1–77.

    Google Scholar 

  • Foust, F.K. 1937. A new species of Rozella parasitic on Allomyces. Journal of the Elisha Mitchell Scientific Society 53: 197–204.

    Google Scholar 

  • Fritsch, F.E. 1929. The genus Sphaeroplea. Annals of Botany 43: 1–26.

    Google Scholar 

  • Garwood, R.J., H. Oliver, and A.R.T. Spencer. 2020. An introduction to the Rhynie chert. Geological Magazine 157: 47–64.

    Google Scholar 

  • Gavrilova, O., N. Zavialova, M. Teklaeva, and E. Karasev. 2018. Potential of CLSM in studying some modern and fossil palynological objects. Journal of Microscopy 269: 291–309.

    Google Scholar 

  • Gleason, F.H., L.T. Carney, O. Lilje, and S.L. Glockling. 2012. Ecological potentials of species of Rozella (Cryptomycota). Fungal Ecology 5: 651–656.

    Google Scholar 

  • Guiry, M.D. 2020. Sphaeroplea C.Agardh, 1824. In AlgaeBase, M.D. Guiry, and G.M. Guiry. World-wide electronic publication, National University of Ireland, Galway. https://www.algaebase.org [last accessed July 30, 2020]

  • Harper, C.J., and M. Krings. 2019. Nimbosphaera rothwellii nov. gen. et sp., an enigmatic microfossil enveloped in a prominent sheath from the Lower Devonian Windyfield chert, Scotland. International Journal of Plant Sciences 180: 558–570.

    Google Scholar 

  • Harper, C.J., M. Krings, J. Galtier, and T.N. Taylor. 2016. A microfossil with suggested affinities to the Peronosporomycetes (Oomycota) from the Carboniferous (c. 330 Ma) of France. Nova Hedwigia 103: 315–326.

    Google Scholar 

  • Held, A.A. 1981. Rozella and Rozellopsis: Naked endoparasitic fungi which dress-up as their hosts. Botanical Review 47: 451–515.

    Google Scholar 

  • Ho, H.H. 2018. The taxonomy and biology of Phytophthora and Pythium. Journal of Bacteriology & Mycology: Open Access 6: 40–45.

    Google Scholar 

  • Iyengar, M.O.P., K. Ramakrishnan, and C.V. Subramanian. 1955. A new species of Sapromyces from South India. Journal of the Indian Botanical Society 34: 140–145.

    Google Scholar 

  • John, D.M., and F. Rindi. 2015. Filamentous (nonconjugating) and plantlike green algae. In Freshwater Algae of North America. Ecology and Classification, 2nd ed., eds. J.D. Wehr, R.G. Sheath, and J.P. Kociolek, 375–427. London: Academic Press/Elsevier Science Publishing Co Inc.

  • Johnson, T.W. 1955. Inoculation studies with a polysporangiate Rozella parasitic in Dictychus anomalus. American Journal of Botany 42: 119–123.

    Google Scholar 

  • Johnson, T.W. 1972. Aquatic fungi of Iceland: Olpidiopsis Cornu. Journal of the Elisha Mitchell Scientific Society 88: 83–91.

    Google Scholar 

  • Johnson, T.W. 1973. Aquatic fungi of Iceland: uniflagellate species. Acta Naturalia Islandica 22: 1–38.

    Google Scholar 

  • Johnson, T.W., R.L. Seymour, and D.E. Padgett. 2002. Biology and Systematics of the Saprolegniaceae.World-wide electronic publication, University of North Carolina at Wilmington, Department of Biological Sciences. https://dl.uncw.edu/digilib/biology/fungi/taxonomy%2520and%2520systematics/padgett%2520book [last accessed July 31, 2020].

  • Karling, J.S. 1932. Studies in the Chytridiales VII. The organization of the chytrid thallus. American Journal of Botany 19: 41–74.

    Google Scholar 

  • Karling, J.S. 1937. The cytology of the Chytridiales with special reference to Cladochytrium replicatum. Memoirs of the Torrey Botanical Club 19: 3–92.

    Google Scholar 

  • Karling, J.S. 1977. Chytridiomycetarum Iconographia. An illustrated and brief descriptive guide to the chytridiomycetous genera with a supplement of the Hyphochytridiomycetes. Vaduz: J. Cramer.

    Google Scholar 

  • Karling, J.S. 1981a. Predominantly holocarpic and eucarpic simple biflagellate phycomycetes. Vaduz: J. Cramer.

    Google Scholar 

  • Karling, J.S. 1981b. Some zoosporic fungi from soils of Sri Lanka. Nova Hedwigia 35: 107–116.

    Google Scholar 

  • Kerp, H., and H. Hass. 2004. De Onder-Devonische Rhynie Chert – het oudste en meest compleet bewaard gebleven terrestrische ecosysteem. Grondboor & Hamer 58: 33–50.

    Google Scholar 

  • Klochkova, T.A., Y.J. Shin, K.H. Moon, T. Motomura, and G.H. Kim. 2016. New species of unicellular obligate parasite, Olpidiopsis pyropiae sp. nov., that plagues Pyropia sea farms in Korea. Journal of Applied Phycology 28: 73–83.

    Google Scholar 

  • Kniep, H. 1928. Die Sexualität der niederen Pflanzen. Differenzierung, Verteilung, Bestimmung und Vererbung des Geschlechts bei den Thallophyten. Jena: G. Fischer.

  • Krings, M. 2019. Palaeolyngbya kerpii nov. sp., a large filamentous cyanobacterium with affinities to Oscillatoriaceae from the Lower Devonian Rhynie chert. PalZ. Paläontologische Zeitschrift 93: 377–386.

    Google Scholar 

  • Krings, M., and C.J. Harper. 2019a. A microfossil resembling Merismopedia (Cyanobacteria) from the 410-million-yr-old Rhynie and Windyfield cherts—Rhyniococcus uniformis revisited. Nova Hedwigia 108: 17–35.

    Google Scholar 

  • Krings, M., and C.J. Harper. 2019b. Fungal intruders of enigmatic propagule clusters occurring in microbial mats from the Lower Devonian Rhynie chert. PalZ. Paläontologische Zeitschrift 93: 135–149.

    Google Scholar 

  • Krings, M., and H. Kerp. 2019. A tiny parasite of unicellular microorganisms from the Lower Devonian Rhynie and Windyfield cherts, Scotland. Review of Palaeobotany and Palynology. https://doi.org/10.1016/j.revpalbo.2019.104106.

    Article  Google Scholar 

  • Krings, M., and T.N. Taylor. 2015. Mantled fungal reproductive units in land plant tissue from the Lower Devonian Rhynie chert. Bulletin of Geosciences 90: 1–6.

    Google Scholar 

  • Krings, M., J. Galtier, T.N. Taylor, and N. Dotzler. 2009. Chytrid-like microfungi in Biscalitheca cf. musata (Zygopteridales) from the Upper Pennsylvanian Grand-Croix cherts (Saint Etienne Basin, France). Review of Palaeobotany and Palynology 157: 309–316.

    Google Scholar 

  • Krings, M., T.N. Taylor, J. Galtier, and N. Dotzler. 2010. A fossil peronosporomycete oogonium with an unusual surface ornament from the Carboniferous of France. Fungal Biology 114: 446–450.

    Google Scholar 

  • Krings, M., T.N. Taylor, and N. Dotzler. 2011. The fossil record of the Peronosporomycetes (Oomycota). Mycologia 103: 445–457.

    Google Scholar 

  • Krings, M., T.N. Taylor, E.L. Taylor, H. Kerp, H. Hass, N. Dotzler, and C.J. Harper. 2012. Microfossils from the Lower Devonian Rhynie Chert with suggested affinities to the peronosporomycetes. Journal of Paleontology 86: 358–367.

    Google Scholar 

  • Krings, M., T.N. Taylor, N. Dotzler, and C.J. Harper. 2013. Frankbaronia velata nov. sp., a putative peronosporomycete oogonium containing multiple oospores from the Lower Devonian Rhynie chert. Zitteliana A 53: 23–30.

    Google Scholar 

  • Krings, M., T.N. Taylor, N. Dotzler, and C.J. Harper. 2016. Morphology and ontogenetic development of Zwergimyces vestitus, a fungal reproductive unit enveloped in a hyphal mantle from the Lower Devonian Rhynie chert. Review of Palaeobotany and Palynology 228: 47–56.

    Google Scholar 

  • Krings, M., C.J. Harper, and E.L. Taylor. 2017a. Fungi and fungal interactions in the Rhynie chert: A review of the evidence, with the description of Perexiflasca tayloriana gen. et sp. nov. Philosophical Transactions of the Royal Society B 373: 20160500.

  • Krings, M., C.J. Harper, E.L. Taylor, and H. Kerp. 2017. Early Devonian (~410 Ma) microfossils resembling Characiopsis (Tribophyceae) and Characium (Chlorophyceae). Journal of Phycology 53: 720–724.

    Google Scholar 

  • Krings, M., H. Kerp, E.L. Taylor, and C.J. Harper. 2017. Hagenococcus aggregatus nov. gen. et sp., a microscopic, colony-forming alga from the 410-million-yr-old Rhynie chert. Nova Hedwigia 105: 205–217.

    Google Scholar 

  • Krings, M., C.J. Harper, H. Kerp, and E.L. Taylor. 2018. Exceptional preservation of sessile, long-stalked microorganisms in the Lower Devonian Windyfield chert (Scotland). In Transformative Paleobotany: Papers to Commemorate the Life and Legacy of Thomas N. Taylor, eds. M. Krings, C.J. Harper, N.R. Cúneo, and G.W. Rothwell, 519–526. London: Elsevier/Academic Press Inc.

  • Laber, B. 2012. Micromyces zygogonii und die Sternkörper der Jochalge Spirogyra. Mikrokosmos 101: 30–35.

    Google Scholar 

  • Letcher, P.M., and M.J. Powell. 2018. A taxonomic summary and revision of Rozella (Cryptomycota). IMA Fungus 9: 383–399.

    Google Scholar 

  • Mark, D.F., C.M. Rice, A.E. Fallick, N.H. Trewin, M.R. Lee, A. Boyce, and J.K.W. Lee. 2011. 40Ar/39Ar dating of hydrothermal activity, biota and gold mineralization in the Rhynie hot-spring system, Aberdeenshire, Scotland. Geochimica et Cosmochimica Acta 75: 555–569.

    Google Scholar 

  • Mark, D.F., C.M. Rice, and N.H. Trewin. 2013. Discussion on ‘A high-precision U-Pb age constraint on the Rhynie Chert Konservat-Lagerstätte: time scale and other implications’ Journal, Vol. 168, 863–872. Journal of the Geological Society of London 170: 701–703.

    Google Scholar 

  • McLarty, D.A. 1941. Studies in the family Woroninaceae–I. Discussion of a new species including a consideration of the genera Pseudolpidium and Olpidiopsis. Bulletin of the Torrey Botanical Club 68: 49–66.

    Google Scholar 

  • Miller, C.E., and D.P. Dylewski. 1980. Life cycle studies on Woronina pythii (Plasmodiophoromycete), an endoparasite of Pythium sp. (Oomycete). Bulletin de la Société Botanique de France (Actualités Botaniques) 127: 119–122.

    Google Scholar 

  • Money, N.P. 2016. Fungal diversity. In The Fungi (3rd edition), eds. S.C. Watkinson, L. Boddy, and N.P. Money, 1–36. Waltham, MA etc.: Academic Press/Elsevier Ltd.

  • Niklas, K.J., E.D. Cobb, and D.R. Crawford. 2013. The evo-devo of multinucleate cells, tissues, and organisms, and an alternative route to multicellularity. Evolution & Development 15: 466–474.

    Google Scholar 

  • Palik, P. 1950. Sphaeroplea Studien. Acta Biologica Academiae Scientiarum Hungaricae 1: 329–361.

    Google Scholar 

  • Parry, S.F., S.R. Noble, Q.G. Crowley, and C.H. Wellman. 2011. A high precision U-Pb age constraint on the Rhynie chert Konservat-Lagerstätte: time scale and other implications. Journal of the Geological Society of London 168: 863–872.

    Google Scholar 

  • Paul, B. 1999. Pythium ornacarpum: a new species with ornamented oogonia isolated from soil in France. FEMS Microbiology Letters 180: 337–344.

    Google Scholar 

  • Powell, C.L., N.H. Trewin, and D. Edwards. 2000. Palaeoecology and plant succession in a borehole through the Rhynie cherts, Lower Old Red Sandstone, Scotland. Geological Society of London Special Publication 180: 439–457.

    Google Scholar 

  • Remy, W., T.N. Taylor, and H. Hass. 1994. Early Devonian fungi: a blastocladalean fungus with sexual reproduction. American Journal of Botany 81: 690–702.

    Google Scholar 

  • Rice, C.M., and W.A. Ashcroft. 2004. The geology of the northern half of the Rhynie Basin, Aberdeenshire, Scotland. Transactions of the Royal Society of Edinburgh, Earth Sciences 94: 299–308.

    Google Scholar 

  • Rice, C.M., N.H. Trewin, and L.I. Anderson. 2002. Geological setting of the early devonian rhynie cherts, Aberdeenshire, Scotland: An early terrestrial hot spring system. Journal of the Geological Society of London 159: 203–214.

    Google Scholar 

  • Schopf, J.W., C. Pereira Calça, A.K. Garcia, A.B. Kudryavtsev, P.A. Souza, C.M. Félix, and T.R. Fairchild. 2016. In situ confocal laser scanning microscopy and Raman spectroscopy of bisaccate pollen from the Irati Subgroup (Permian, Paraná Basin, Brazil): Comparison with acid-macerated specimens. Review of Palaeobotany and Palynology 233: 169–175.

    Google Scholar 

  • Servais, T., R. Brocke, O. Fatka, A. Le Hérissé, and S.G. Molyneux. 1997. Value and meaning of the term acritarch. Acta Universitatis Carolinae–Geologica 40: 631–643.

  • Seymour, R.L. 1984. Leptolegnia chapmanii, an oomycete pathogen of mosquito larvae. Mycologia 76: 670–674.

    Google Scholar 

  • Shanor, L. 1939. Studies in the genus Olpidiopsis. II: the relationship of Pseudolpidium Fischer and Olpidiopsis (Cornu) Fischer. Journal of the Elisha Mitchell Scientific Society 55: 179–195.

    Google Scholar 

  • Sheath, R.G., and J.D. Wehr. 2015. Introduction to the freshwater algae. In Freshwater Algae of North America. Ecology and Classification, 2nd ed., eds. J.D. Wehr, R.G. Sheath, and J.P. Kociolek, 1–11. London: Academic Press/Elsevier Science Publishing Co Inc.

  • Slater, B.J., S. McLoughlin, and J. Hilton. 2013. Peronosporomycetes (Oomycota) from a Middle Permian permineralised peat within the Bainmedart Coal Measures, Prince Charles Mountains Antarctica. PLOS One 8(8): e70707.

    Google Scholar 

  • Steciow, M.M. 1996. Hongos acuaticos zoosporicos (Oomycetes, Mastigomycotina) en laguna vitel y tributarios (Buenos Aires, Argentina). Boletín de la Sociedad Argentina de Botánica 32: 67–73.

    Google Scholar 

  • Strullu-Derrien, C., A.R.T. Spencer, T. Goral, J. Dee, R. Honegger, P. Kenrick, J.E. Longcore, and M.L. Berbee. 2017. New insights into the evolutionary history of Fungi from a 407 Ma Blastocladiomycota fossil showing a complex hyphal thallus. Philosophical Transactions of the Royal Society of London B. https://doi.org/10.1098/rstb.2016.0502.

    Article  Google Scholar 

  • Strullu-Derrien, C., A. le Hérissé, T. Goral, A.R.T. Spencer, and P. Kenrick. 2020. The overlooked aquatic green algal component of early terrestrial environments: Triskelia scotlandica gen. et sp. nov. from the Rhynie cherts. Papers in Palaeontology. https://doi.org/10.1002/spp2.1303.

  • Sykes, E.E., and D. Porter. 1980. Infection and development of the obligate parasite Catenaria allomycis on Allomyces arbuscula. Mycologia 72: 288–300.

    Google Scholar 

  • Taylor, T.N., and M. Krings. 2005. Fossil microorganisms and land plants: associations and interactions. Symbiosis 40: 119–135.

    Google Scholar 

  • Taylor, T.N., W. Remy, H. Hass, and H. Kerp. 1995. Fossil arbuscular mycorrhiza from the Early Devonian. Mycologia 87: 560–573.

    Google Scholar 

  • Thines, M., Y.J. Choi, E. Kemen, S. Ploch, E.B. Holub, H.D. Shin, and J.D.G. Jones. 2009. A new species of Albugo parasitic to Arabidopsis thaliana reveals new evolutionary patterns in white blister rusts (Albuginaceae). Persoonia 22: 123–128.

    Google Scholar 

  • Traquair, J.A., and W.E. McKeen. 1980. Electron microscopy of developing Aphanomyces oogonia and oospores. Mycologia 72: 378–394.

    Google Scholar 

  • Trewin, N.H., and S.R. Fayers. 2016. Macro to micro aspects of the plant preservation in the Early Devonian Rhynie cherts, Aberdeenshire, Scotland. Earth and Environmental Sciences Transactions of the Royal Society of Edinburgh 106: 67–80.

    Google Scholar 

  • Trewin, N.H., and H. Kerp. 2017. The Rhynie and Windyfield cherts, Early Devonian, Rhynie, Scotland. In Terrestrial Conservation Lagerstätten. Windows into the Evolution of Life on Land, eds. N.C. Fraser and H.D. Sues, 1–38. Edinburgh: Dunedin Academic Press.

  • Trewin, N.H., and C.M. Rice. 1992. Stratigraphy and sedimentology of the Devonian Rhynie chert locality. Scottish Journal of Geology 28: 37–47.

    Google Scholar 

  • Tsarenko, P.M. and D.M. John. 2011. Order Sphaeropleales sensu lato.In The Freshwater Algal Flora of the British Isles, eds. D.M. John, B.A. Whitton, and A.J. Brook, 419–475. Cambridge: Cambridge University Press.

  • Van Der Plaats-Nitering, A.J. 1981. Monograph of the genus Pythium. Studies in Mycology 21: 1–242.

    Google Scholar 

  • Voglmayr, H., L.J. Bonner, and M.W. Dick. 1999. Taxonomy and oogonial ultrastructure of a new aero-aquatic peronosporomycete, Medusoides gen. nov. (Pythiogetonaceae fam. nov.). Mycological Research 103: 591–606.

    Google Scholar 

  • Walker, C., C.J. Harper, M.C. Brundrett, and M. Krings. 2018. Looking for arbuscular mycorrhizal fungi (AMF) in the fossil record: An illustrated guide. In Transformative Paleobotany: Papers to Commemorate the Life and Legacy of Thomas N. Taylor, eds. M. Krings, C.J. Harper, N.R. Cúneo, and G.W. Rothwell, 481–517. London: Elsevier/Academic Press Inc.

  • Weiss, H.J. 2019. Another filamentous alga in the Rhynie chert. Rhynie Chert News 140. World-wide electronic publication, The Author. https://www.chertnews.de/filamentous_alga.html [last accessed July 30, 2020]

  • Wellman, C.H. 2006. Spore assemblages from the Lower Devonian ‘Lower Old Red Sandstone’ deposits of the Rhynie outlier, Scotland. Transactions of the Royal Society of Edinburgh, Earth Sciences 97: 167–211.

    Google Scholar 

  • Wellman, C.H. 2017. Palaeoecology and palaeophytogeography of the Rhynie chert plants: further evidence from integrated analysis of in situ and dispersed spores. Philosophical Transactions of the Royal Society of London B. https://doi.org/10.1098/rstb.2016.0491.

    Article  Google Scholar 

  • Wellman, C.H., H. Kerp, and H. Hass. 2006. Spores of the Rhynie chert plant Aglaophyton (Rhynia) major (Kidston and Lang) D.S. Edwards, 1986. Review of Palaeobotany and Palynology 142: 229–250.

    Google Scholar 

  • Wellman, C.H., L.E. Graham, and L.A. Lewis. 2019. Filamentous green algae from the Early Devonian Rhynie chert. PalZ. Paläontologische Zeitschrift 93: 387–393.

    Google Scholar 

  • Whiffen, A.J. 1942. A discussion of some species of Olpidiopsis and Pseudolpidium. American Journal of Botany 29: 607–611.

    Google Scholar 

  • Ziegler, A.W. 1948. A comparative study of zygote germination in the Saprolegniaceae. Journal of the Elisha Mitchell Scientific Society 64: 13–40.

    Google Scholar 

Download references

Acknowledgments

I gratefully acknowledge H. Martin and S. Sónyi (both Munich, Germany) for technical assistance, C.J. Harper (Dublin, Ireland) for preparing focus stacking images, S. Pennycook (Auckland, New Zealand) for help with the registration of the fossil in MycoBank, and H. Kerp (Münster, Germany) and an anonymous referee for insightful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Krings.

Additional information

Handling Editor: Mike Reich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krings, M. Triskelia scotlandica, an enigmatic Rhynie chert microfossil revisited. PalZ 95, 1–15 (2021). https://doi.org/10.1007/s12542-020-00531-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12542-020-00531-w

Keywords

Navigation