Skip to main content
Log in

Effect of the Austenitizing Temperature on Microstructure Evolution and Impact Toughness of a Novel Bainite Ductile Iron

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The effect of austenitizing temperature on microstructure evolution and impact toughness of a newly developed Fe–3.0C–2.8Si–2.0Mn–0.9V–0.2Cr bainite ductile iron was investigated in this research. The ductile iron specimens were heat treated under different continuous cooling process, involving austenitizing between 900 and 980 °C and followed tempering at 200 °C. Optical microscopy, X-ray diffraction, scanning electron microscope and transmission electron microscope tests were conducted to investigate the microstructure evolution. Impact toughness and Rockwell hardness were measured. The results showed that the microstructure of the ductile iron mainly consisted of graphite, acicular bainite and retained austenite after continuous cooling process. The austenitizing temperature could change the volume fraction and size of bainite and retained austenite. There existed a C-area, where retained austenite accumulated near the graphite, except for specimen austenitized at 920 °C. The impact toughness of specimens increased first and then get worse with the increasing of austenitizing temperature. The impact toughness was related with the volume fraction of bainite and the morphology of retained austenite. The fracture mechanism of the bainite ductile iron belonged to cleavage fracture. Chunky graphite acted as the source of microcrack during the impact process. The bulky retained austenite behaved as a prior path for the microcrack propagation, while the bainite and thin filmy retained austenite limited its propagation.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. X. Chen, J. Xu, H. Hu, H. Mohrbacher, M. Kang, W. Zhang, A. Guo, Q. Zhai, Mater. Sci. Eng. A 688, 416 (2017)

    Article  CAS  Google Scholar 

  2. T. Borsato, P. Ferro, F. Berto, C. Carollo, Int. J. Fatigue 102, 221 (2017)

    Article  CAS  Google Scholar 

  3. J.F. Dias, G.O. Ribeiro, D.J. Carmo, J. Vilela, Mater. Sci. Eng. A 556, 408 (2012)

    Article  Google Scholar 

  4. S. Laino, J.A. Sikora, R.C. Dommarco, Wear 265, 1 (2008)

    Article  CAS  Google Scholar 

  5. A.D. Basso, R.A. Martinez, J.A. Sikora, Mater. Sci. Technol. 23, 1321 (2007)

    Article  CAS  Google Scholar 

  6. H. Zhang, Y. Wu, Q. Li, X. Hong, Wear 406, 156 (2018)

    Article  Google Scholar 

  7. A. Sinlah, D. Handayani, R.C. Voigt, K. Hayrynen, R. M’Saoubi, C. Saldana, J. Cast Metal. Res. 29, 62 (2016)

    Article  CAS  Google Scholar 

  8. T. Sun, R. Song, X. Wang, P. Deng, C. Wu, Mater. Sci. Eng. A 626, 375 (2015)

    Article  CAS  Google Scholar 

  9. S.C. Murcia, M.A. Paniagua, E.A. Ossa, Mater. Sci. Eng. A 566, 8 (2013)

    Article  CAS  Google Scholar 

  10. J. Aranzabal, G. Serramoglia, C.A. Goria, D. Rousière, Int. J. Cast Metal. Res. 16, 185 (2003)

    Article  CAS  Google Scholar 

  11. J.Z. Li, X.S. Ning, W.H. Lu, Q.D. Zhou, Stren. Met. Alloys. 3, 1311 (1989)

    Google Scholar 

  12. R. Zhou, Y. Jiang, D. Lu, R. Zhou, Z. Li, Wear 250, 529 (2001)

    Article  Google Scholar 

  13. M. Soliman, H. Ibrahim, A. Nofal, H. Palkowski, J. Mater. Process. Tech. 227, 1 (2016)

    Article  CAS  Google Scholar 

  14. P. Weiß, A. Tekavčič, A. Bührig-Polaczek, Mater. Sci. Eng. A 713, 67 (2018)

    Article  Google Scholar 

  15. A. Alhussein, M. Risbet, A. Bastien, J.P. Chobaut, D. Ballou, J. Favegeon, Mater. Sci. Eng. A 605, 222 (2014)

    Article  CAS  Google Scholar 

  16. C.S. Roberts, Trans. AIME. 197, 203 (1982)

    Google Scholar 

  17. M. Górny, G. Angella, E. Tyrała, M. Kawalec, S. Paź, A. Kmita, Met. Mater. Int. 25, 956 (2019)

    Article  Google Scholar 

  18. A. Basso, R. Martínez, J. Sikora, J. Alloy. Compd. 509, 9884 (2011)

    Article  CAS  Google Scholar 

  19. A.S. Nishikawa, G. Miyamoto, T. Furuhara, A.P. Tschiptschin, H. Goldenstein, Acta Mater. 179, 1 (2019)

    Article  CAS  Google Scholar 

  20. S. Panneerselvam, S.K. Putatunda, R. Gundlach, J. Boileau, Mater. Sci. Eng. A 694, 72 (2017)

    Article  CAS  Google Scholar 

  21. E. Foglio, D. Lusuardi, A. Pola, G. Vecchia, M. Gelfi, Mater. Design 111, 353 (2016)

    Article  CAS  Google Scholar 

  22. J. Yang, S.K. Putatunda, Mater. Sci. Eng. A 393, 254 (2005)

    Article  Google Scholar 

  23. V.T.T. Miihkinen, D.V. Edmonds, Mater. Sci. Technol. 3, 441 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the support from the Fundamental Research Funds for the Central Universities (Nos. FRF-TP-18-039A1, FRF-IDRY-19-013), the Project funded by China Postdoctoral Science Foundation (No. 2019M650482).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongjin Wang or Renbo Song.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhang, Y., Song, R. et al. Effect of the Austenitizing Temperature on Microstructure Evolution and Impact Toughness of a Novel Bainite Ductile Iron. Met. Mater. Int. 27, 4014–4022 (2021). https://doi.org/10.1007/s12540-020-00893-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00893-5

Keywords

Navigation