Skip to main content
Log in

Investigation of Molten Liquids Flow in the Blast Furnace Lower Zone: Numerical Modelling of Molten Slag Through Channels in a Packed Bed

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Slag flow behaviour is critically important in the lower zone of the ironmaking blast furnace, and is closely related to the selection of charged raw materials, coke bed permeability, process stability and hot metal quality. To better understand the effect of slag properties on flow behaviour in the coke bed, a numerical approach was applied to characterize the slag flow through funnel analogues. These analogues were used to represent molten slag flow through the inter-particle voids of a coke packed bed. A critical funnel neck size, through which no slag flowed was experimentally established and confirmed by numerical modelling. The influence of slag wettability on the occurrence of blockage was also determined via numerical modelling. An increase in either contact angle or surface tension can make the occurrence of blockage easier. For a constant neck size, the relationship between surface tension and contact angle is non-linear. The status of the remaining slag in the funnel corresponding to different slag wettabilities was differentiated in terms of the blockage in the upper part and hanging in the lower part of the funnel. Modelling was also undertaken of slag flow through the inter-particle void between spherical particles to evaluate empirical correlations for predicting the remaining slag in the packed bed. These results show that the numerical approach is very useful in providing some level of guidance to help understand and predict the slag flow behaviour in the blast furnace ironmaking process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Reprinted from Ref. 18, with permission

Fig. 6

Reprinted from Ref. 18, with permission

Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. 1. M. Naito, K. Takeda and Y. Matsui, ISIJ International 2015, vol. 55, pp. 7-35.

    CAS  Google Scholar 

  2. 2. Y. Omori: Blast Furnace Phenomena and Modelling. Elsevier Applied Science, London, 1987.

    Google Scholar 

  3. 3. T. Usui, H. Kawabata, Z.I. Morita and K. Masamori, ISIJ International 1993, vol. 33, pp. 687-696.

    CAS  Google Scholar 

  4. 4. T. Sugiyama, T. Nakagawa, H. Sibaike and Y. Oda, Tetsu to Hagane 1987, vol. 73, pp. 2044-2051.

    CAS  Google Scholar 

  5. 5. J.F. Elliott, R.A. Buchanan and J.B. Wagstaff, Journal of Metals 1952, vol. 194, pp. 709-717.

    Google Scholar 

  6. 6. J. Szekely and J. Mendrykowski, Chemical Engineering Science 1972, vol. 27, pp. 959-963.

    CAS  Google Scholar 

  7. 7. N. Standish and J.B. Drinkwater, Journal of Metals 1972, vol. 24, pp. 43-45.

    CAS  Google Scholar 

  8. 8. T. Fukutake and V. Rajakumar, Transactions of the Iron and Steel Institute of Japan 1982, vol. 22, pp. 355-364.

    Google Scholar 

  9. 9. T.S. Pham, D. Pinson, A.B. Yu and P. Zulli, Chemical Engineering Science 1999, vol. 54, pp. 5339-5345.

    Google Scholar 

  10. 10. G.S. Gupta, J.D. Litster, V.R. Rudolph, E.T. White and A. Domanti, ISIJ International 1996, vol. 36, pp. 32-39.

    CAS  Google Scholar 

  11. 11. S.J. Chew, G.X. Wang, A.B. Yu and P. Zulli, Ironmaking and Steelmaking 1997, vol. 24, pp. 392-400.

    CAS  Google Scholar 

  12. 12. H. Kawabata, K. Shinmyou, T. Harada and T. Usui, ISIJ International 2005, vol. 45, pp. 1474-1481.

    CAS  Google Scholar 

  13. 13. Y. Bando, S. Hayashi, A. Matsubara and M. Nakamura, ISIJ International 2005, vol. 45, pp. 1461-1465.

    CAS  Google Scholar 

  14. 14. H. Ohgusu, Y. Sassa, Y. Tomita, K. Tanaka and M. Hasegawa, Tetsu to Hagane 1992, vol. 78, pp. 1164-1170.

    CAS  Google Scholar 

  15. 15. W.M. Husslage, M.A. Reuter, R.H. Heerema, T. Bakker and A.G.S. Steeghs, Metallurgical and Materials Transactions B 2005, vol. 36, pp. 765-776.

    CAS  Google Scholar 

  16. 16. I.H. Jeong, H.S. Kim and Y. Sasaki, ISIJ International 2013, vol. 53, pp. 2090-2098.

    CAS  Google Scholar 

  17. 17. D. Jang, M. Shin, J.S. Oh, H.S. Kim, S.H. Yi and J. Lee, ISIJ International 2014, vol. 54, pp. 1251-1255.

    CAS  Google Scholar 

  18. 18. H.L. George, B.J. Monaghan, R.J. Longbottom, S.J. Chew and P.R. Austin, ISIJ International 2013, vol. 53, pp. 1172-1179.

    CAS  Google Scholar 

  19. 19. H.L. George, R.J. Longbottom, S.J. Chew, D.J. Pinson and B.J. Monaghan, ISIJ International 2014, vol. 54, pp. 1790-1796.

    CAS  Google Scholar 

  20. 20. H.L. George, R.J. Longbottom, S.J. Chew and B.J. Monaghan, ISIJ International 2014, vol. 54, pp. 820-826.

    CAS  Google Scholar 

  21. 21. J.S. Oh and J. Lee, Journal of Materials Science 2016, vol. 51, pp. 1813-1819.

    CAS  Google Scholar 

  22. 22. M. Hino, T. Nagasaka, A. Katsumata, K.-I. Higuchi, K. Yamaguchi and N. Kon-No, Metallurgical and Materials Transactions B 1999, vol. 30, pp. 671-683.

    CAS  Google Scholar 

  23. T. Sugiyama and M. Sugata, Nippon Steel Technical Report 1987, pp. 32–42.

  24. 24. J. Szekely and Y. Kajiwara, Trans. Iron Steel Inst. Jpn. 1979, vol. 19, pp. 76-84.

    CAS  Google Scholar 

  25. 25. Y. Ohno and M. Schneider, Tetsu to Hagane 1988, vol. 74, pp. 1923-1930.

    Google Scholar 

  26. 26. J. Wang, R. Takahashi and J. Yagi, Tetsu to Hagane 1991, vol. 77, pp. 1585-92.

    CAS  Google Scholar 

  27. 27. Y. Eto, K. Takeda, S. Miyagawa, H. Itaya and S. Taguchi, ISIJ international 1994, vol. 33, pp. 681-686.

    Google Scholar 

  28. 28. G.X. Wang, S.J. Chew, A.B. Yu and P. Zulli, Metallurgical and Materials Transactions B 1997, vol. 28, pp. 333-343.

    CAS  Google Scholar 

  29. 29. G.X. Wang, S.J. Chew, A.B. Yu and P. Zulli, ISIJ International 1997, vol. 37, pp. 573-582.

    CAS  Google Scholar 

  30. 30. S.J. Chew, P. Zulli and A. Yu, ISIJ International 2001, vol. 41, pp. 1112-1121.

    CAS  Google Scholar 

  31. 31. I.H. Jeong and S.M. Jung, ISIJ International 2016, vol. 56, pp. 537-545.

    CAS  Google Scholar 

  32. 32. T. Kon, S. Natsui, S. Ueda, R. Inoue and T. Ariyama, ISIJ International 2012, vol. 52, pp. 1565-1573.

    CAS  Google Scholar 

  33. 33. T. Kon, S. Natsui, S. Ueda, R. Inoue and T. Ariyama, ISIJ International 2013, vol. 53, pp. 590-597.

    CAS  Google Scholar 

  34. 34. T. Kon, S. Natsui, S. Ueda and H. Nogami, ISIJ International 2015, vol. 55, pp. 1284-1290.

    CAS  Google Scholar 

  35. 35. S. Natsui, T. Kikuchi, R.O. Suzuki, T. Kon, S. Ueda and H. Nogami, ISIJ International 2015, vol. 55, pp. 1259-1266.

    CAS  Google Scholar 

  36. 36. S. Natsui, K.I. Ohno, S. Sukenaga, T. Kikuchi and R.O. Suzuki, ISIJ International 2018, vol. 58, pp. 282-291.

    CAS  Google Scholar 

  37. 37. S. Natsui, K. Tonya, H. Nogami, T. Kikuchi, R.O. Suzuki, K.I. Ohno, S. Sukenaga, T. Kon, S. Ishihara and S. Ueda, Processes 2020, vol. 8, pp. 221.

    CAS  Google Scholar 

  38. 38. S. Natsui, A. Sawada, H. Nogami, T. Kikuchi and R.O. Suzuki, ISIJ International 2020, vol. 60, pp. 1445-1452.

    CAS  Google Scholar 

  39. 39. S. Natsui, A. Sawada, H. Nogami, T. Kikuchi and R.O. Suzuki, ISIJ International 2020, vol. 60, pp. 1453-1460.

    CAS  Google Scholar 

  40. 40. C.W. Hirt and B.D. Nichols, Journal of Computational Physics 1981, vol. 39, pp. 201-225.

    Google Scholar 

  41. D.L. Youngs, In Numerical Methods for Fluid Dynamics, K.W. Morton and M.J. Baines, eds., Academic Press, New York, 1982.

  42. 42. J.U. Brackbill, D.B. Kothe and C. Zemach, Journal of Computational Physics 1992, vol. 100, pp. 335-354.

    CAS  Google Scholar 

  43. ANSYS Inc., ANSYS Fluent-19.1-User Online Manual, 2018.

  44. D.G. Holmes and S.D. Connell, 9th Computational Fluid Dynamics Conference, Buffalo, NY, USA, 1989.

  45. 45. J.P. Van Doormaal and G.D. Raithby, Numerical Heat Transfer 1984, vol. 7, pp. 147-163.

    Google Scholar 

  46. K.C. Mills: Slags Model (ed 1.07). National Physical Laboratory, UK, 1991.

  47. 47. P.V. Riboud, Y. Roux, L.D. Lucas and H. Gaye, Fachberichte Huttenpraxis Metallweiterverarbeitung 1981, vol. 19, pp. 859-69.

    CAS  Google Scholar 

  48. 48. R.H. Perry and D.W. Green: Perry’s Chemical Engineering’s Handbook. 7th ed. McGraw-Hill, New York, 1997.

    Google Scholar 

  49. 49. M. Hayashi, S. Sukenaga, K.I. Ohno, S. Ueda, K. Sunahara and N. Saito, Tetsu-To-Hagane 2014, vol. 100, pp. 211-26.

    CAS  Google Scholar 

  50. 50. L.D. Landau and E.M. Lifshitz: Fluid Mechanics. Pergamon Press, New York, 1987.

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge funding from the Australian Research Council (ARC) through the Industrial Transformation Research Hubs Scheme under Project Number: IH130100017. The permissions from ArcelorMittal and BlueScope Ltd to publish are gratefully acknowledged. This research was undertaken with the assistance of resources and services from the National Computational Infrastructure (NCI), which is supported by the Australian Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. F. Dong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted May 27, 2020; Accepted October 11, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, X.F., Jayasekara, A., Sert, D. et al. Investigation of Molten Liquids Flow in the Blast Furnace Lower Zone: Numerical Modelling of Molten Slag Through Channels in a Packed Bed. Metall Mater Trans B 52, 255–266 (2021). https://doi.org/10.1007/s11663-020-02009-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-02009-1

Navigation