Skip to main content
Log in

Polyploidy and high environmental tolerance increase the invasive success of plants

  • Regular Paper – Ecology/Ecophysiology/Environmental Biology
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Ploidy level and genome size (GS) could affect the invasive capacity of plants, although these parameters can be contradictory. While small GS seems to favor dispersion, polyploidy—which increases the GS—also seems to favor it. Using a phylogenetic path analysis, we evaluated the effects of both factors on the environmental tolerance and invasive success of plants. We selected 99 invasive plant species from public online databases and gathered information about invasive capacity (number of non-original countries in which each species occurs), tolerance to environmental factors, ploidy level, and GS. The invasive capacity varied depending on the ploidy level and tolerance to environmental factors. Polyploids and species with increased tolerance to elevated temperatures and rainfall values exhibited high invasive capacity. We found no evidence that GS affects the invasive capacity of plants. We suggest that the genetic variability provided by polyploidization has a positive impact on plant competitiveness, which may ultimately lead to an increased ability to colonize new environments. In a global warming scenario, integrative approaches using phenotypic, genetic, epigenetic, and ecological traits should be a productive route to unveil the aspects of invasive plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aasamaa K, Sõber A, Rahi M (2001) Leaf anatomical characteristics associated with shoot hydraulic conductance, stomatal conductance and stomatal sensitivity to changes of leaf water status in temperate deciduous trees. Funct Plant Biol 28:765–774

    Google Scholar 

  • Archaeopteryx (2018) https://sites.google.com/site/cmzmasek/home/software/archaeopteryx

  • Barrett SCH, Richardson BJ (1986) Genetic attributes of invading species. In: Groves RH, Burdon JJ (eds) Ecology of biological invasions: an Australian perspective. Australian Academy of Science, Camberra, pp 21–33

    Google Scholar 

  • Beaulieu JM, Moles AT, Leitch IJ, Bennett MD, Dickie JB, Knight CA (2007) Correlated evolution of genome size and seed mass. New Phytol 173:422–437

    PubMed  Google Scholar 

  • Beaulieu JM, Leitch IJ, Patel S, Pendharkar A, Knight CA (2008) Genome size is a strong predictor of cell size and stomatal density in angiosperms. New Phytol 179:975–986

    PubMed  Google Scholar 

  • Beest M, Le Roux JJ, Richardson DM et al (2012) The more the better? The role of polyploidy in facilitating plant invasions. Ann Bot 109:19–45

    Google Scholar 

  • Bennett MD, Leitch IJ, Hanson L (1998) DNA amounts in two samples of angiosperm weeds. Ann Bot 82:121–134

    Google Scholar 

  • Berg JA, Meyer GA, Young EB (2016) Propagule pressure and environmental conditions interact to determine establishment success of an invasive plant species, glossy buckthorn (Frangula alnus), across five different wetland habitat types. Biol Invasions 18:1363–1373

    Google Scholar 

  • Bossdorf O, Richards CL, Pigliucci M (2008) Epigenetics for ecologists. Ecol Lett 11:106–115

    PubMed  Google Scholar 

  • Bradley BA, Wilcove DS, Oppenheimer M (2010) Climate change increases risk of plant invasion in the Eastern United States. Biol Invasions 12:1855–1872

    Google Scholar 

  • Brochmann C, Brysting AK, Alsos IG et al (2004) Polyploidy in arctic plants. Biol J Linn Soc 82:521–536

    Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference. A practical information-theoretic approach. Springer, New York

    Google Scholar 

  • Cavalier-Smith T (2005) Economy, speed and size matter: evolutionary forces driving nuclear genome miniaturization and expansion. Ann Bot 95:14–75

    Google Scholar 

  • Chandra A, Dubey A (2010) Effect of ploidy levels on the activities of Δ 1-pyrroline-5-carboxylate synthetase, superoxide dismutase and peroxidase in Cenchrus species grown under water stress. Plant Physiol Biochem 48:27–34

    CAS  PubMed  Google Scholar 

  • Colautti RI, MacIsaac HJ (2004) A neutral terminology to define “invasive” species. Divers Distrib 10:135–141

    Google Scholar 

  • Colautti RI, Grigorovich IA, MacIsaac HJ (2006) Propagule pressure: a null model for biological invasions. Biol Invasions 8:1023–1037

    Google Scholar 

  • Daehler CC (2003) Performance comparisons of co-occurring native and alien invasive plants: implications for conservation and restoration. Annu Rev Ecol Evol Syst 34:183–211

    Google Scholar 

  • Dawson W, Burslem DF, Hulme PE (2009) Factors explaining alien plant invasion success in a tropical ecosystem differ at each stage of invasion. J Ecol 97:657–665

    Google Scholar 

  • Deng B, Du W, Liu C, Sun W, Tian S, Dong H (2012) Antioxidant response to drought, cold and nutrient stress in two ploidy levels of tobacco plants: low resource requirement confers polytolerance in polyploids? Plant Growth Regul 66:37–47

    CAS  Google Scholar 

  • Dennis R, Thomas CD (2000) Bias in butterfly distribution maps: the influence of hot spots and recorder’s home range. J Insect Conserv 4:73–77

    Google Scholar 

  • Doležel J, Greilhuber J, Suda J (2007) Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc 2:2233–2244

    PubMed  Google Scholar 

  • Dong M, Lu BR, Zhang HB, Chen JK, Li B (2006) Role of sexual reproduction in the spread of an invasive clonal plant Solidago canadensis revealed using intersimple sequence repeat markers. Plant Spec Biol 21:13–18. https://doi.org/10.1111/j.1442-1984.2006.00146.x

    Article  Google Scholar 

  • Doudová J, Douda J, Mandák B (2017) The complexity underlying invasiveness precludes the identification of invasive traits: a comparative study of invasive and non-invasive heterocarpic Atriplex congeners. PLoS ONE 12:e0176455

    PubMed  PubMed Central  Google Scholar 

  • Drenovsky RE, Grewell BJ, D’Antonio CM (2012) A functional trait perspective on plant invasion. Ann Bot 110:141–153

    PubMed  PubMed Central  Google Scholar 

  • Dullinger S, Kleinbauer I, Peterseil J, Smolik M, Essl F (2009) Niche based distribution modelling of an invasive alien plant: effects of population status, propagule pressure and invasion history. Biol Invasions 11:2401–2414

    Google Scholar 

  • Ferreras AE, Galetto L (2010) From seed production to seedling establishment: important steps in an invasive process. Acta Oecologica 36:211–218

    Google Scholar 

  • Francis D, Davies MS, Barlow PW (2008) A strong nucleotypic effect on the cell cycle regardless of ploidy level. Ann Bot 101:747–757

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Voyer A, von Hardenberg A (2014) An introduction to phylogenetic path analysis. In: Garamszegi LZ (ed) Modern phylogenetic comparative methods and their application in evolutionary biology. Springer, Berlin, pp 201–229

    Google Scholar 

  • Gonzalez-Voyer A, González-Suárez M, Vilà C, Revilla E (2016) Larger brain size indirectly increases vulnerability to extinction in mammals. Evolution 70:1364–1375

    PubMed  Google Scholar 

  • Greilhuber J, Doležel J, Lysak MA, Bennett MD (2005) The origin, evolution and proposed stabilization of the terms “genome size” and “C-value” to describe nuclear DNA contents. Ann Bot 95:255–260

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grotkopp E, Rejmánek M, Sanderson MJ, Rost TL, Soltis P (2004) Evolution of genome size in pines (Pinus) and its life-history correlates: supertree analyses. Evolution 58:1705–1729

    CAS  PubMed  Google Scholar 

  • Guarino F, Cicatelli A, Brundu G, Improta G, Triassi M, Castiglione S (2019) The use of MSAP reveals epigenetic diversity of the invasive clonal populations of Arundo donax L. PLoS ONE 14:e0215096

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hamilton JA, Miller JM (2016) Adaptive introgression as a resource for management and genetic conservation in a changing climate. Conserv Biol 30:33–41

    PubMed  Google Scholar 

  • Harvey PH, Pagel MD (1991) The comparative method in evolutionary biology (Vol. 239). Oxford university press, Oxford

  • Higgins SI, Richardson DM (2014) Invasive plants have broader physiological niches. Proc Natl Acad Sci USA 111:10610–10614

    CAS  PubMed  Google Scholar 

  • Hijmans RJ, Gavrilenko T, Stephenson S, Bamberg J, Salas A, Spooner DM (2007) Geographical and environmental range expansion through polyploidy in wild potatoes (Solanum section Petota). Glob Ecol Biogeogr 16:485–495

    Google Scholar 

  • Hou QQ, Chen BM, Peng SL, Chen LY (2014) Effects of extreme temperature on seedling establishment of nonnative invasive plants. Biol Invasions 16:2049–2061

    Google Scholar 

  • Janssens SB, Couvreur TL, Mertens A et al (2020) A large-scale species level dated angiosperm phylogeny for evolutionary and ecological analyses. Biodivers Data J 8:e39677. https://doi.org/10.3897/BDJ.8.e39677

    Article  PubMed  PubMed Central  Google Scholar 

  • Kadmon R, Farber O, Danin A (2004) Effect of roadside bias on the accuracy of predictive maps produced by bioclimatic models. Ecol Appl 14:401–413

    Google Scholar 

  • Kissling WD, Lord JM, Schnittler M (2006) Agamospermous seed production of the invasive tussock grass Nardus stricta L. (Poaceae) in New Zealand–evidence from pollination experiments. Flora 201:144–151

    Google Scholar 

  • Knight CA, Ackerly DD (2002) Variation in nuclear DNA content across environmental gradients: a quantile regression analysis. Ecol Lett 5:66–76

    Google Scholar 

  • Knight CA, Beaulieu JM (2008) Genome size scaling through phenotype space. Ann Bot 101:759–766

    PubMed  PubMed Central  Google Scholar 

  • Knight CA, Molinari NA, Petrov DA (2005) The large genome constraint hypothesis: evolution, ecology and phenotype. Ann Bot 95:177–190

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kraaijeveld K (2010) Genome size and species diversification. Evol Biol 37:227–233

    PubMed  PubMed Central  Google Scholar 

  • Křivánek M, Pyšek P, Jarošík V (2006) Planting history and propagule pressure as predictors of invasion by woody species in a temperate region. Biol Conserv 20:1487–1498

    Google Scholar 

  • Lambdon PW (2008) Is invasiveness a legacy of evolution? Phylogenetic patterns in the alien flora of Mediterranean islands. J Ecol 96:46–57

    Google Scholar 

  • Landis JB, Kurti A, Lawhorn AJ et al (2020) Differential gene expression with an emphasis on floral organ size differences in natural and synthetic polyploids of Nicotiana tabacum (Solanaceae). Genes 11:1–24

    Google Scholar 

  • Lavergne S, Muenke NJ, Molofsky J (2010) Genome size reduction can trigger rapid phenotypic evolution in invasive plants. Ann Bot 105:109–116

    CAS  PubMed  Google Scholar 

  • Lee CE (2002) Evolutionary genetics of invasive species. Trends Ecol Evol 17:386–391. https://doi.org/10.1016/S0169-5347(02)02554-5

    Article  Google Scholar 

  • Leffler AJ, James JJ, Monaco TA, Sheley RL (2014) A new perspective on trait differences between native and invasive exotic plants. Ecology 95:298–305

    PubMed  Google Scholar 

  • Leishman MR, Haslehurst T, Ares A, Baruch Z (2007) Leaf trait relationships of native and invasive plants: community-and global-scale comparisons. New Phytol 176:635–643

    CAS  PubMed  Google Scholar 

  • Leishman MR, Thomson VP, Cooke J (2010) Native and exotic invasive plants have fundamentally similar carbon capture strategies. J Ecol 98:28–42

    CAS  Google Scholar 

  • Leitch IJ, Bennett MD (2007) Genome size and its uses: the impact of flow cytometry. In: Dolezel J, Greilhuber J, Suda J (eds) Flow cytometry with plant cells: analysis of genes, chromosomes and genomes. Wiley-VCH, Weinheim, pp 153–176

    Google Scholar 

  • Leitch IJ, Johnston E, Pellicer J, Hidalgo O, Bennett MD (2019) Plant DNA C-values. https://cvalues.science.kew.org/. Accessed 12 Sep 2019

  • Levin DA (2002) The role of chromosomal change in plant evolution. Oxford University Press, New York

    Google Scholar 

  • Linder HP, Barker NP (2014) Does polyploidy facilitate long-distance dispersal? Ann Bot 113:1175–1183

    PubMed  PubMed Central  Google Scholar 

  • Liu Y, Oduor AMO, Zhang Z, Manea A, Tooth IM, Leishman MR, Xu X, van Kleunen M (2017) Do invasive alien plants benefit more from global environmental change than native plants? Glob Chang Biol 23(8):3363–3370

    PubMed  Google Scholar 

  • Lowry E, Lester SE (2006) The biogeography of plant reproduction: potential determinants of species’ range sizes. J Biogeogr 33:1975–1982

    Google Scholar 

  • Maceira NO, Jacquard P, Lumaret R (1993) Competition between diploid and derivative autotetraploid Dactylis glomerata L. from Galicia. Implications for the establishment of novel polyploid populations. New Phytol 124:321–328

    Google Scholar 

  • McNeely JA, Mooney HA, Neville LE, Schei PJ, Waage JK (2001) Global strategy on invasive alien species. In: Gland and Cambridge, IUCN in collaboration with the Global Invasive Species Programme

  • Molina-Venegas R, Rodríguez MÁ (2017) Revisiting phylogenetic signal; strong or negligible impacts of polytomies and branch length information? BMC Evol Biol 17:53. https://doi.org/10.1186/s12862-017-0898-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Mundry R (2014) Statistical issues and assumptions of phylogenetic generalized least squares. In: Garamszegi LZ (ed) Modern phylogenetic comparative methods and their application in evolutionary biology. Springer, Berlin, pp 131–153

    Google Scholar 

  • Oduor AM (2013) Evolutionary responses of native plant species to invasive plants: a review. New Phytol 200:986–992

    PubMed  Google Scholar 

  • Pandit MK (2006) Continuing the search for pattern among rare plants: are diploid species more likely to be rare? Evol Ecol Res 8:543–552

    Google Scholar 

  • Pandit MK, White SM, Pocock MJ (2014) The contrasting effects of genome size, chromosome number and ploidy level on plant invasiveness: a global analysis. New Phytol 203:697–703

    CAS  PubMed  Google Scholar 

  • Pellicer J, Leitch IJ (2014) The application of flow cytometry for estimating genome size and ploidy level in plants. In: Besse P (ed) Molecular plant taxonomy. Humana Press, Totowa, pp 279–307

    Google Scholar 

  • Peng X, Li H, Yang Y et al (2017) Vegetative propagation capacity of invasive alligator weed through small stolon fragments under different treatments. Sci Rep 7:43826. https://doi.org/10.1038/srep43826

    Article  PubMed  PubMed Central  Google Scholar 

  • Pfennig KS, Kelly AL, Pierce AA (2016) Hybridization as a facilitator of species range expansion. Proc R Soc B 283:20161329. https://doi.org/10.1098/rspb.2016.1329

    Article  PubMed  Google Scholar 

  • Proches S, Wilson JRU, Richardson DM, Rejmánek M (2008) Searching for phylogenetic pattern in biological invasions. Glob Ecol Biogeogr 17:5–10

    Google Scholar 

  • Pyšek P, Jarošík V (2005) Residence time determines the distribution of alien plants. In: Inderjit (eds) Invasive plants: ecological and agricultural aspects. Birkhäuser Basel, Switzerland, pp 77–96

  • Pyšek P, Křivánek M, Jarošík V (2009) Planting intensity, residence time, and species traits determine invasion success of alien woody species. Ecology 90:2734–2744

    PubMed  Google Scholar 

  • Pyšek P, Jarošík V, Hulme PE et al (2012) A global assessment of invasive plant impacts on resident species, communities and ecosystems: the interaction of impact measures, invading species’ traits and environment. Glob Change Biol 18:1725–1737

    Google Scholar 

  • Pyšek P, Manceur AM, Alba C et al (2015) Naturalization of central European plants in North America: species traits, habitats, propagule pressure, residence time. Ecology 96:762–774

    PubMed  Google Scholar 

  • Pyšek P, Skálová H, Čuda J (2018) Small genome separates native and invasive populations in an ecologically important cosmopolitan grass. Ecology 99:79–90

    PubMed  Google Scholar 

  • R Core Team (2020) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/

  • Rejmánek M (1996) A theory of seed plant invasiveness: the first sketch. Biol Conserv 78:171–181

    Google Scholar 

  • Rejmánek M, Richardson DM (1996) What attributes make some plant species more invasive? Ecology 77:1655–1661

    Google Scholar 

  • Rezende L, Suzigan J, Amorim FW, Moraes AP (2020) Can plant hybridization and polyploidy lead to pollinator shift? Acta Bot Brasilica 34:229–242

    Google Scholar 

  • Rice A, Glick L, Abadi S et al (2015) The Chromosome Counts Database (CCDB) – a community resource of plant chromosome numbers. New Phytol 206:19–26

    PubMed  Google Scholar 

  • Rieseberg LH, Kim SC, Randell RA et al (2007) Hybridization and the colonization of novel habitats by annual sunflowers. Genetica 129:149–165

    PubMed  Google Scholar 

  • Rohlf FJ (2006) A comment on phylogenetic correction. Evolution 60:1509–1515

    PubMed  Google Scholar 

  • Ross LC, Lambdon PW, Hulme PE (2008) Disentangling the roles of climate, propagule pressure and land use on the current and potential elevational distribution of the invasive weed Oxalis pes-caprae L. on Crete. Perspect Plant Ecol 10:251–258

    Google Scholar 

  • Rouget M, Richardson DM (2003) Inferring process from pattern in plant invasions: a semimechanistic model incorporating propagule pressure and environmental factors. Am Nat 162:713–724

    PubMed  Google Scholar 

  • Segraves KA, Anneberg TJ (2016) Species interactions and plant polyploidy. Am J Bot 103:1326–1335

    PubMed  Google Scholar 

  • Sharma GP, Raghubanshi AS, Singh JS (2005) Lantana invasion: an overview. Weed Biol Manag 5:157–165. https://doi.org/10.1111/j.1445-6664.2005.00178.x

    Article  Google Scholar 

  • Shipley B (2000) Cause and correlation in biology: a user’s guide to path analysis, structural equations and causal inference. Cambridge University Press, Cambridge

    Google Scholar 

  • Shipley B (2009) Confirmatory path analysis in a generalized multilevel context. Ecology 90:363–368

    PubMed  Google Scholar 

  • Shipley B (2013) The AIC model selection method applied to path analytic models compared using a d-separation test. Ecology 94:560–564

    PubMed  Google Scholar 

  • Simberloff D (2009) The role of propagule pressure in biological invasions. Annu Rev Ecol Evol S 40:81–102

    Google Scholar 

  • Song Y, Endepols S, Klemann N et al (2011) Adaptive introgression of anticoagulant rodent poison resistance by hybridization between old world mice. Curr Biol 21:1296–1301

    CAS  PubMed  PubMed Central  Google Scholar 

  • Štajner N, Bohanec B, Javornik B (2002) Genetic variability of economically important Asparagus species as revealed by genome size analysis and rDNA ITS polymorphisms. Plant Sci 162:931–937

    Google Scholar 

  • Stelkens RB, Brockhurst MA, Hurst GDD, Greig D (2014) Hybridization facilitates evolutionary rescue. Evol Appl 7:1209–1217

    PubMed  PubMed Central  Google Scholar 

  • Stutz S, Hinz HL, Konowalik K, Müller-Schärer H, Oberprieler C, Schaffner U (2016) Ploidy level in the genus Leucanthemum correlates with resistance to a specialist herbivore. Ecosphere 7:e01460

    Google Scholar 

  • Suda J, Meyerson LA, Leitch IJ, Pyšek P (2015) The hidden side of plant invasions: the role of genome size. New Phytol 205:994–1007

    PubMed  Google Scholar 

  • Thuiller W, Richardson DM, Rouget M, Proches S, Wilson JRU (2006) Interactions between environment, species traits, and human uses describe patterns of plant invasions. Ecology 87:1755–1769

    PubMed  Google Scholar 

  • Treier UA, Broennimann O, Normand S et al (2009) Shift in cytotype frequency and niche space in the invasive plant Centaurea maculosa. Ecology 90:1366–1377

    PubMed  Google Scholar 

  • van der Bijl W (2018) phylopath: Easy phylogenetic path analysis in R. PeerJ 6:e4718. https://doi.org/10.7717/peerj.4718

    Article  PubMed  PubMed Central  Google Scholar 

  • van Kleunen M, Weber E, Fischer M (2010) A meta-analysis of trait differences between invasive and non-invasive plant species. Ecol Lett 13:235–245

    PubMed  Google Scholar 

  • Veselý P, Šmarda P, Bureš P et al (2020) Environmental pressures on stomatal size may drive plant genome size evolution: evidence from a natural experiment with Cape geophytes. Ann Bot 126:323–330

    PubMed  Google Scholar 

  • Vinogradov AE (2003) Selfish DNA is maladaptive: evidence from the plant Red List. Trends Genet 19:609–614

    CAS  PubMed  Google Scholar 

  • von Hardenberg A, Gonzalez-Voyer A (2013) Disentangling evolutionary cause-effect relationships with phylogenetic confirmatory Path Analysis. Evolution 67:378–387. https://doi.org/10.1111/j.1558-5646.2012.01790.x

    Article  Google Scholar 

  • Wan JZ, Chen LX, Gao S et al (2019) Ecological niche shift between diploid and tetraploid plants of Fragaria (Rosaceae) in China. S Afr J Bot 121:68–75

    Google Scholar 

  • Wang MZ, Li HL, Li JM, Yu FH (2019) Correlations between genetic, epigenetic and phenotypic variation of an introduced clonal herb. Heredity 124:146–155. https://doi.org/10.1038/s41437-019-0261-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Warren RJ, Bahn V, Bradford MA (2012) The interaction between propagule pressure, habitat suitability and density-dependent reproduction in species invasion. Oikos 121:874–881

    Google Scholar 

  • Williamson MH, Fitter A (1996) The characters of successful invaders. Biol Conserv 78:163–170

    Google Scholar 

  • Wilson JR, Richardson DM, Rouget M, Procheş Ş, Amis MA, Henderson L, Thuiller W (2007) Residence time and potential range: crucial considerations in modelling plant invasions. Divers Distrib 13:11–22

    Google Scholar 

  • Witkowski ETF, Wilson M (2001) Changes in density, biomass, seed production and soil seed banks of the non-native invasive plant, Chromolaena odorata, along a 15 year chronosequence. Plant Ecol 152:13–27

    Google Scholar 

  • Zhang Y, Parepa M, Fischer M, Bossdorf O (2016) Epigenetics of colonizing species? A study of Japanese knotweed in Central Europe. In: Barrett SCH, Colautti RI, Dlugosch KM, Rieseberg LH (eds) Invasion genetics: the baker and stebbins legacy. Wiley, Chichester, pp 328–340

  • Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:3–14

    Google Scholar 

Download references

Acknowledgements

This study was conceived during the course Fundamentos e Fronteiras em Biologia da Polinização carried out at Uberlândia/Brazil in 2017. We thank the course staff and colleagues for the opportunity and rich discussions, especially the colleague Brayan Paiva Cavalcante. We also thank two anonymous reviewers for helpful suggestions that significantly improved the quality of this manuscript. RFM, DQ, and EV thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Code 001, for financial support. RFM thanks the University of Missouri-St. Louis and the Missouri Botanical Garden for providing facilities during the development of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renan Fernandes Moura.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 88 kb)

Supplementary file 2 (DOCX 27 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moura, R.F., Queiroga, D., Vilela, E. et al. Polyploidy and high environmental tolerance increase the invasive success of plants. J Plant Res 134, 105–114 (2021). https://doi.org/10.1007/s10265-020-01236-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-020-01236-6

Keywords

Navigation