Skip to main content
Log in

An optimization approach to solving the split feasibility problem in Hilbert spaces

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

We study the split feasibility problem with multiple output sets in Hilbert spaces. In order to solve this problem we introduce two iterative methods by using an optimization approach. Our iterative methods do not depend on the norm of the transfer operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Censor, Y., Elfving, T.: A multiprojection algorithm using Bregman projections in a product space. Numer. Algorithms 8, 221–239 (1994)

    Article  MathSciNet  Google Scholar 

  2. Byrne, C.: Iterative oblique projection onto convex sets and the split feasibility problem. Inverse Prob. 18, 441–453 (2002)

    Article  MathSciNet  Google Scholar 

  3. Byrne, C.: A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Prob. 18, 103–120 (2004)

    Article  MathSciNet  Google Scholar 

  4. Butnariu, D., Resmerita, E.: Bregman distances, totally convex functions and a method for solving operator equations in Banach spaces. Abstr. Appl. Anal. 2006, 1–39 (2006)

    Article  MathSciNet  Google Scholar 

  5. Byrne, C., Censor, Y., Gibali, A., Reich, S.: The split common null point problem. J. Nonlinear Convex Anal. 13, 759–775 (2012)

    MathSciNet  MATH  Google Scholar 

  6. Censor, Y., Elfving, T., Kopf, N., Bortfeld, T.: The multiple-sets split feasibility problem and its application. Inverse Prob. 21, 2071–2084 (2005)

    Article  MathSciNet  Google Scholar 

  7. Censor, Y., Gibali, A., Reich, S.: Algorithms for the split variational inequality problems. Numer. Algorithms 59, 301–323 (2012)

    Article  MathSciNet  Google Scholar 

  8. Dadashi, V.: Shrinking projection algorithms for the split common null point problem. Bull. Aust. Math. Soc. 99, 299–306 (2017)

    Article  MathSciNet  Google Scholar 

  9. Eskandani, G.Z., Raeisi, M., Rassias, T.M.: A hybrid extragradient method for solving pseudomonotone equilibrium problems using Bregman distance. J. Fixed Point Theory Appl. 20, 132 (2018)

    Article  MathSciNet  Google Scholar 

  10. Takahashi, S., Takahashi, W.: The split common null point problem and the shrinking projection method in Banach spaces. Optimization 65, 281–287 (2016)

    Article  MathSciNet  Google Scholar 

  11. Takahashi, W.: The split feasibility problem and the shrinking projection method in Banach spaces. J. Nonlinear Convex Anal. 16, 1449–1459 (2015)

    MathSciNet  MATH  Google Scholar 

  12. Takahashi, W.: The split common null point problem in Banach spaces. Arch. Math. 104, 357–365 (2015)

    Article  MathSciNet  Google Scholar 

  13. Wang, F., Xu, H.-K.: Cyclic algorithms for split feasibility problems in Hilbert spaces. Nonlinear Anal. 74, 4105–4111 (2011)

    Article  MathSciNet  Google Scholar 

  14. Xu, H.-K.: A variable Krasnosel’skii–Mann algorithm and the multiple-set split feasibility problem. Inverse Prob. 22, 2021–2034 (2006)

    Article  Google Scholar 

  15. Xu, H.-K.: Iterative methods for the split feasibility problem in infinite dimensional Hilbert spaces. Inverse Prob. 26, 105018 (2010)

    Article  MathSciNet  Google Scholar 

  16. Yang, Q.: The relaxed CQ algorithm for solving the split feasibility problem. Inverse Prob. 20, 1261–1266 (2004)

    Article  MathSciNet  Google Scholar 

  17. Reich, S., Truong, M.T., Mai, T.N.H.: The split feasibility problem with multiple output sets in Hilbert spaces. Optim. Lett. 14, 2335–2353 (2020)

    Article  MathSciNet  Google Scholar 

  18. Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Marcel Dekker, New York (1984)

    MATH  Google Scholar 

  19. Opial, Z.: Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull. Am. Math. Soc. 73, 591–597 (1967)

    Article  MathSciNet  Google Scholar 

  20. Goebel, K., Kirk, W.A.: Topics in Metric Fixed Point Theory, Cambridge Studies in Advanced Mathematics, vol. 28. Cambridge University Press, Cambridge, UK (1990)

    Book  Google Scholar 

  21. Maingé, P.E.: Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization. Set-Valued Anal. 16, 899–912 (2008)

    Article  MathSciNet  Google Scholar 

  22. Xu, H.-K.: Strong convergence of an iterative method for nonexpansive and accretive operators. J. Math. Anal. Appl. 314, 631–643 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author was partially supported by the Israel Science Foundation (Grant 820/17), by the Fund for the Promotion of Research at the Technion and by the Technion General Research Fund. The second author was supported by the Science and Technology Fund of the Thai Nguyen University of Sciences. All the authors are very grateful to two anonymous referees for their helpful comments and useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Truong Minh Tuyen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reich, S., Tuyen, T.M. & Ha, M.T.N. An optimization approach to solving the split feasibility problem in Hilbert spaces. J Glob Optim 79, 837–852 (2021). https://doi.org/10.1007/s10898-020-00964-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-020-00964-2

Keywords

Mathematics Subject Classification

Navigation