Skip to main content
Log in

Inheritance pattern of okra enation leaf curl disease among cultivated species and its relationship with biochemical parameters

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Okra production in eastern India at present is severely threatened by whitefly-mediated okra enation leaf curl disease (OELCuD). Identification of resistant genotype and understanding the genetic control and biochemical relationship of OELCuD resistance are prerequisite for developing an effective breeding strategy. This study was conducted employing six populations (P1, P2, F1, F2, BC1 and BC2) of two selected (resistant × susceptible (R×S)) crosses. Associationship between severity of OELCuD and biochemical parameters of parents and hybrids at preflowering and flowering stages was studied. Segregation pattern of the genotypes in F2 generation showing OELCuD reaction of two crosses suggested that two duplicate recessive genes was operative for resistance to OELCuD. Generation mean analysis revealed involvement of both additive and nonadditive effects in the inheritance of disease resistance. Hence, postponement of selection in later generations or intermating among the selected segregates followed by one or two generations of selfing to break the undesirable linkage and allow the accumulation of favourable alleles could be suggested for the development of stable resistant genotype against this disease. Higher peroxidase activity and total phenol content in leaf emerged as reliable biochemical markers for early selection of genotype resistant to OELCuD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Acharya J., Chatterjee S., Konar A., Chattopadhyay A., Mandal A. K. and Dutta S. 2018 Host plant resistance through physico-chemical characters against major insect pests of okra occurring in the Gangetic plains of eastern India. Int. J. Pest Manag. 65, 137–146.

    Google Scholar 

  • Alegbejo M. D. 1997 Evaluation of okra genotype for resistance to okra mosaic virus. Proceedings of the 15th Annual conference of the Horticultural Society of Nigeria, held at the National Horticultural Research Institute, Ibadan. P. 60.

  • Anonymous 2017 Indian Horticulture Database. National Horticulture Board. Ministry of Agriculture and Farmers Welfare, Government of India, Gurugram.

    Google Scholar 

  • Atiri G. I. 1984 The occurrence of okra mosaic virus in Nigerian weeds. Ann. Appl. Biol. 104, 261–265.

    Google Scholar 

  • Bananej K., Kraberger S. and Varsani A. 2016 Okra enation leaf curl virus in papaya from Iran displaying severe leaf curl symptoms. J. Plant Pathol. 98, 637–639.

    Google Scholar 

  • Barberan T. F. and Espin J. C. 2001 Phenolic compounds and related enzymes as determinants of quality in fruits and vegetables. J. Sci. Food Agric. 81, 853–876.

    Google Scholar 

  • Brisson L. F., Tenhaken R. and Lamb C. 1994 Function of oxidative cross-linking of cell wall structural proteins in plant disease resistance. Plant Cell 6, 1703–1712.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell C. L. and Madden L. V. 1990 Introduction to plant disease epidemiology, pp. 532. John Wiley, New York.

  • Chandran S. A., Packialakshmi R. M., Subhalakshmi K., Prakash C. and Poovannan K. 2013 First report of an alpha satellite associated with okra enation leaf curl virus. Virus Genes 46, 585–587.

    CAS  PubMed  Google Scholar 

  • Chattopadhyay A., Dutta S., Bhattacharya I., Karmakar K. and Hazra P. 2007 Okra. In Technology for vegetable crop production. All India Coordinated Research Project on Vegetable Crops, Nadia, India.

  • Das S., Chattopadhyay A., Chattopadhyay S. B., Dutta S. and Hazra P. 2012 Characterization of okra germplasms and their genetic divergence in the Gangetic alluvium of eastern India. Vegetos 25, 86–94.

    Google Scholar 

  • Das S., Chattopadhyay A., Dutta S., Chattopadhyay S. B. and Hazra P. 2013 Breeding okra for higher productivity and yellow vein mosaic tolerance. Intl. J. Veg. Sci. 19, 58–77.

    Google Scholar 

  • Dasgupta M. K. 1988 Principles of plant pathology, pp. 500. Allied Publishers, Ahemedabad.

  • Devi A. P., Banerjee S., Maurya P. K., Bhattacharjee T. and Chattopadhyay A. 2018 Assessment of breeding potential of cultivated okra (Abelmoschus esculentus L. Moench) for selecting donor parent aiming at enation leaf curl virus disease tolerance in eastern India. Agric. Res. Tech.: Open Access J. 18, 556072.

  • Devi A. P., Banerjee S., Bhattacharjee T., Maurya P. K., Mandal A. K., Dutta S. et al. 2019 Genetic control of enation leaf curl virus disease tolerance in cultivated species of okra. Intl. J. Veg. Sci. 26, 150–162.

    Google Scholar 

  • Fraser R. S. S. 1990 Disease resistance mechanisms. In Plant viruses (ed. C. L. Mandahar), pp. 321-345. CRC Press, Florida.

  • Ghanem G. A. M. 2003 Okra leaf curl virus: a monopartite begomovirus infecting okra crop in Saudi Arabia. Arab J. Biotechnol. 6, 139–152.

    Google Scholar 

  • Gomez K.A. and Gomez A.A. 1984 Statistical procedures for agricultural research, 2nd edition, pp. 680. John Wiley, New York.

  • Hayman B. I. 1958 Separation of epistatic from additive and dominance variation in generation means. Heredity 12, 371–390.

    Google Scholar 

  • Jabeen N., Ahmed N., Ghani M. Y. and Sofi P. A. 2009 Role of phenolic compounds in resistance to chilli wilt. Commun. Biom. Crop Sci. 4, 52–61.

  • Jaiti F., Verdeil J. L. and El-hadrami I. 2009 Effect of jasmonic acid on the induction of polyphenoloxidase and peroxidase activities in relation to date palm resistance against Fusarium oxysporum f. sp. albedinis. Physiol. Mol. Plant Pathol. 24, 84–90.

    Google Scholar 

  • Jamir I., Mandal A. K., Devi P., Bhattacharjee T., Maurya P. K., Dutta S. et al. 2020 Screening of genotypes against viral diseases and assessment of yield loss due to yellow vein mosaic virus in okra grown in the eastern part of India. Indian Phytopathol. (https://doi.org/10.1007/s42360-019-00183-0).

    Article  Google Scholar 

  • Kang B. C., Yeam I. and Jahn M. M. 2005 Genetic of plant virus resistance. Ann. Rev. Phytopathol. 43, 581–621.

    CAS  Google Scholar 

  • Kearsey M. J. and Pooni H. S. 1996 The genetic analysis of quantitative traits. In Plant genetic group school of biological science. The University of Birmingham, Chapman and Hall, London.

  • Lattanzio V., Lattanzio M. T. and Veronica C. A. 2006 Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. In Phytochemistry: advances in research (ed. F. Imperato), pp. 23–67. Research Signpost, Trivandrum, Kerala, India.

    Google Scholar 

  • Lubin Z., Gouhui Z. and Huaping L. 2005 Molecular characterization of papaya leaf curl virus infecting Carica papaya in Guangzhou and its biological test. Sci. Agric. Sinica. 38, 1805–1810.

    Google Scholar 

  • Madden L. V., Hughes G. and Irwin M. E. 2000 Coupling disease progress-curve and time-of-infection functions for predicting yield loss of crops. Phytopathology 90, 788–800.

    CAS  PubMed  Google Scholar 

  • Malik C. P. and Singh M. B. 1980 Plant enzymology and histoenzymology, pp. 434. Kalyani Publishers, New Delhi.

  • Marame F., Desalegne L., Fininsa C. and Sigvald R. 2009 Genetic analysis for some plant and fruit traits, and its implication for a breeding program of hot pepper (Capsicum annuum var. annuum L.). Hereditas 146, 131–140.

    PubMed  Google Scholar 

  • Matern U. and Kneusel R. E. 1988 Phenolic compounds in plant disease resistance. Phytoparasitica 16, 153–170.

    CAS  Google Scholar 

  • Mather K. 1949 Biometrical genetics. Mathuen, London.

    Google Scholar 

  • Mather K. and Jinks J. L. 1982 Biometrical genetics, 3rd edition. Chapman and Hall, London.

    Google Scholar 

  • McKinney H. H. and Davis R. J. 1925 Influence of soil temperature and moisture on infection of wheat seedling by Helminthosporium sativum. J. Agric. Res. 26, 195–217.

    Google Scholar 

  • Mishra G. P., Singh B., Seth T., Singh A. K., Halder J. and Krishnan N. et al. 2017 Biotechnological Advancements and Begomovirus Management in Okra (Abelmoschus esculentus L.): Status and Perspectives. Front. Plant Sci. 8, 360.

  • Murthy H. M. K. and Deshpande A. A. 1997 Genetics of yield attributes in chilli (Capsicum annuum L.). Veg. Sci. 24, 118–122.

    Google Scholar 

  • Nadeem A., Mehmood T., Tahir M., Khalid S. and Xing Z. 1997 First report of papaya leaf curl disease in Pakistan. Plant Dis. 81, 1333.

    CAS  PubMed  Google Scholar 

  • Nariani T. K. and Seth M. L. 1958 Reaction of Abelmoschus and Hibiscus species to yellow vein mosaic virus. Indian Phytopath. 11, 137–140.

    Google Scholar 

  • Prabu T. and Warade S. D. 2009 Biochemical basis of resistance to yellow vein mosaic virus in okra. Veg. Sci. 36, 283–287.

    Google Scholar 

  • Prakasha T.L. 2009 Serodiagnosis and molecular characterization of bhendi yellow vein mosaic virus, M.Sc. thesis, University of Agricultural Sciences, Dharwad, India.

  • Ranger C., Singh A., Frantz J., Canas L., Locke J. and Reding M. et al. 2009 Influence of silicon on resistance of Zinnia elegans to Myzus persicae (Hemiptera: Aphididae). Environ. Entomol. 38, 129–136.

    CAS  PubMed  Google Scholar 

  • Roy A., Acharyya S., Das S., Ghosh R., Paul S. and Srivastava R. K. et al. 2009 Distribution, epidemiology and molecular variability of the begomovirus complexes associated with yellow vein mosaic disease of mesta in India. Virus Res. 141, 237–246.

    CAS  PubMed  Google Scholar 

  • Ruffel S., Gallois J. L., Moury B., Rabaglia C., Palloix A. and Caranta C. 2006 Silutaneous mutations in translation initiation factors elF4E and elF(iso)4E are required to prevent Pepper Veinal mottle Virous infection of popper. J. Gen. Virol. 87, 2089–2098.

    CAS  PubMed  Google Scholar 

  • Sadasivam S. and Manickam A. 1996 Biochemical methods, 2nd edition. New Age International Publisher, New Delhi.

    Google Scholar 

  • Saini R. S., Arora Y. K., Chawla H. K. L. and Wagle D. S. 1988 Total phenols and sugar content in wheat cultivars resistant and susceptible to Ustilago nuda (Jens) Rostrup. Biochem. Physiol. Pglanzon. 183, 89–93.

    CAS  Google Scholar 

  • Sanwal S. K., Singh M., Singh B. and Naik P. S. 2014 Resistance to yellow vein mosaic virus and okra enation leaf curl virus: challenges and future strategies. Curr. Sci. 106, 470–471.

    Google Scholar 

  • Seal S. E., Bosch F. V. D. and Jeger M. J. 2006 Factors influencing begomovirus evolution and their increasing global significance: implications for sustainable control. Cr. Rev. Plant Sci. 25, 23–46.

    Google Scholar 

  • Seth T., Chattopadhyay A., Dutta S., Hazra P. and Singh B. 2017 Genetic control of yellow vein mosaic virus disease in okra and its relationship with biochemical parameters. Euphytica 2, 13–30.

    Google Scholar 

  • Singh B., Rai M., Kalloo G., Satpathy S. and Pandey K. K. 2007 Wild taxa of okra (Abelmoschus species): reservoir of genes for resistance to biotic stresses. Acta Hort. 752, 323–328.

    Google Scholar 

  • Singh D. R., Singh P. K., Syamal M. M. and Gautam S. S. 2009 Studies on combining ability in okra. Indian J. Hort. 66, 277–280.

    Google Scholar 

  • Singh S. J. 1996 Assessment of losses in okra due to enation leaf curl virus. Indian J. Virol. 12, 51–53.

    Google Scholar 

  • Singh S. J. and Dutta O. P. 1986 Enation leaf curl of okra - a new virus disease. Indian J. Virol. 2, 114–117.

    Google Scholar 

  • Sohrab S. S., Mirza Z., Karim S., Rana D., Abuzenadah A. M. and Chaudhary A. G. et al. 2013. Detection of begomovirus associated with okra leaf curl disease. Arch. Phytopath. Plant Prot. 46, 1047–1053.

    Google Scholar 

  • Venkataravanappa V., Reddy C. N. L., Jalali S., Briddon R. W. and Reddy M. K. 2014 Molecular identification and biological characterisation of a begomovirus associated with okra enation leaf curl disease in India. Eur. J. Plant Pathol. 141, 217–235.

    Google Scholar 

  • Venkataravanappa V., Reddy C. N. L., Jalali S., Briddon R. W. and Reddy M. K. 2015 Molecular identification and biological characterisation of a begomovirus associated with okra enation leaf curl disease in India. Eur. J. Plant Pathol. 141, 217–235.

    CAS  Google Scholar 

  • Vyskočilová S., Tay W. T., Brunschot S. V., Seal S. and Colvin J. 2018 An integrative approach to discovering cryptic species within the Bemisia tabaci whitefly species complex. Sci. Rep. 8: 10886.

    PubMed  PubMed Central  Google Scholar 

  • Yadav Y., Maurya P. K., Devi A. P., Jamir I., Bhattacharjee T. and Banerjee S. et al. 2018 Enation leaf curl virus (ELCV): A real threat in major okra production belts of India: a review. J. Pharmacogn. Phytochem. 7, 3795–3802.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the ICAR-IIVR, Varanasi, India and ICAR-IIHR, Bengaluru, India for providing genetic materials to conduct this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arup Chattopadhyay.

Additional information

Corresponding editor: Manoj Prasad

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, Y., Maurya, P.K., Bhattacharjee, T. et al. Inheritance pattern of okra enation leaf curl disease among cultivated species and its relationship with biochemical parameters. J Genet 99, 84 (2020). https://doi.org/10.1007/s12041-020-01241-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12041-020-01241-7

Keywords

Navigation