Skip to main content
Log in

Ultraviolet Radiation-Emitting Gd3+-Doped Sr2ZnSi2O7 Host Lattice Prepared by Sol–Gel Procedure and Evaluation of Gamma-Ray Exposure Parameters

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Using the sol–gel process, a series of Sr2-xZnSi2O7:xGd (0.01 ≤ x≤0.11) samples was fabricated. Their crystal characteristics, surface morphologies, and spectral characteristics were analyzed using X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and photoluminescence (PL) spectroscopy. Upon 272-nm excitation, a prominent emission band appeared at 313 nm (6P7/2 → 8S7/2) in all the samples. The electron paramagnetic resonance (EPR) and PL analyses confirmed the presence of Gd3+ in the Sr2ZnSi2O7 structure, where the Gd3+ ions occupied distorted Sr2+ sites in the host lattice. Additionally, three photon interaction parameters, namely the mass attenuation coefficient, effective atomic number, and effective electron density, were calculated within the 1 keV–100 GeV photon energy range for all the samples. These photon interaction parameters varied widely over the studied energy range. Particularly, the shielding effectiveness increased with increasing gadolinium concentration. These interaction parameters will be very useful for shielding applications against gamma-rays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Li, Z. Tang, Z. Zhang, X. Wang, and J. Zhang, J. Mater. Sci. 20, 1505 (2001).

    Google Scholar 

  2. R. Shrivastava, J. Kaur, V. Dubey, and B. Jaykumar, Bull. Mater. Sci. 37, 925 (2014).

    CAS  Google Scholar 

  3. J. Kaur, R. Shrivastava, V. Dubey, and B. Jaykumar, Res. Chem. Intermed. 40, 2599 (2014).

    CAS  Google Scholar 

  4. M. Ardit, G. Cruciani, and M. Dondi, Z. Kristallogr. 225, 298 (2010).

    CAS  Google Scholar 

  5. T. Joseph and M.T. Sebastian, J. Am. Ceram. Soc. 93, 147 (2010).

    CAS  Google Scholar 

  6. T. Joseph and M.T. Sebastian, Int. J. Appl. Ceram. Technol. 8, 854 (2011).

    CAS  Google Scholar 

  7. K. Toda, Y. Imanari, T. Nonogawa, J. Miyoshi, K. Uematsu, and M. Sato, J. Ceram. Soc. Japan. 110, 283 (2002).

    CAS  Google Scholar 

  8. L. Jiang, C.K. Chang, and D.L. Mao, Opt. Mater. 27, 51 (2004).

    Google Scholar 

  9. H. Kamioka, T. Yamaguchi, M. Hirano, T. Kamiya, and H. Hosono, J. Lumin. 122–123, 339 (2007).

    Google Scholar 

  10. X.-J. Wang, Z.Y. He, D. Jia, W. Strek, R. Dariusz, D. Hreniak, and W.M. Yen, Microelectron. J. 36, 546 (2005).

    CAS  Google Scholar 

  11. L. Pan, S. Liu, X. Zhang, O. Oderinde, F. Yao, and G. Fu, J. Alloys Compd. 737, 39 (2018).

    CAS  Google Scholar 

  12. Y. Hao and Y.-H. Wang, Mater. Res. Bull. 42, 2219 (2007).

    CAS  Google Scholar 

  13. Y. Zhang, R. Pang, C. Li, C. Zang, and Q. Su, J. Rare Earths 28, 705 (2010).

    Google Scholar 

  14. J. Wan, Y. Yao, G. Tang, and Y. Qian, J. Nanosci. Nanotechnol. 8, 1449 (2008).

    CAS  Google Scholar 

  15. T. Aitasalo, D. Hreniak, J. Hölsä, T. Laamanen, M. Lastusaari, J. Niittykoski, F. Pellé, and W. Stre̢k, J. Lumin. 122–123, 110 (2007).

    Google Scholar 

  16. V. Singh, K.N. Shinde, N. Singh, P.K. Singh, D.A. Hakeem, and A.S. Nagpure, Optik 158, 1302 (2018).

    CAS  Google Scholar 

  17. J. Kong, Z. Liu, D. Cai, Y. Fan, P. Zhao, X. Liu, P. Pu, L. Song, and C. He, Sensors Actuators B. 256, 913 (2018).

    CAS  Google Scholar 

  18. F. Zheng, X. Ou, Q. Pan, X. Xiong, C. Yang, Z. Fu, and M. Liu, Chem. Eng. J. 334, 497 (2018).

    CAS  Google Scholar 

  19. R.R. Kanna, N. Lenin, K. Sakthipandi, and A.S. Kumar, J. Magn. Magn. Mater. 453, 78 (2018).

    CAS  Google Scholar 

  20. G. Liang and L. Xiao, Biomater. Sci. 5, 2122 (2017).

    CAS  Google Scholar 

  21. C.R. Kesavulu, H.J. Kim, S.W. Lee, J. Kaewkhao, E. Kaewnuam, and N. Wantana, J. Alloys Compd. 704, 557 (2017).

    CAS  Google Scholar 

  22. M. Xu, L. Wang, L. Liu, D. Jia, and R. Sheng, J. Lumin. 146, 475 (2014).

    CAS  Google Scholar 

  23. A.O. Chauhan, A.B. Gawande, and S.K. Omanwar, Optik 127, 6647 (2016).

    CAS  Google Scholar 

  24. V. Singh, G. Sivaramaiah, J.L. Rao, and S.H. Kim, J. Electron. Mater. 43, 3486 (2014).

    CAS  Google Scholar 

  25. S. Tamboli, B. Rajeswari, and S.J. Dhoble, Luminescence 31, 551 (2016).

    CAS  Google Scholar 

  26. X. Hong, J. Wen, X. Xiong, and Y. Hu, Chemosphere 154, 537 (2016).

    CAS  Google Scholar 

  27. B. Liang, D. Pang, C. Jin, F. Li, and Y. Wang, Poly. Degradat. Stability 97, 2162 (2012).

    CAS  Google Scholar 

  28. O. Taofiq, Â. Fernandes, L. Barros, M.F. Barreiro, and I.C.F.R. Ferreira, Trends Food Sci. Technol. 70, 82 (2017).

    CAS  Google Scholar 

  29. W. Köster and A. Wiskemann, Z Hautkr. 65, 1022 (1990).

    Google Scholar 

  30. H. van Weelden, B. De La Faille, E. Young, and J.C. Van Der Leun, Br. J. Dermatol. 119, 11 (1988).

    Google Scholar 

  31. V. Singh, G. Sivaramaiah, J.L. Rao, and S.H. Kim, J. Lumin. 157, 82 (2015).

    CAS  Google Scholar 

  32. P.P. Mokoena, M. Gohain, B.C.B. Bezuidenhoudt, H.C. Swart, and O.M. Ntwaeaborwa, J. Lumin. 155, 288 (2014).

    CAS  Google Scholar 

  33. S. Okamoto, R. Uchino, K. Kobayashi, and H. Yamamoto, J. Appl. Phys. 106, 013522 (2009).

    Google Scholar 

  34. V. Singh, N. Singh, M.S. Pathak, S. Watanabe, T.K. Gundu Rao, P.K. Sing, and V. Dubey, Optik 157, 1391 (2018).

    CAS  Google Scholar 

  35. V. Singh, N. Singh, H. Jeong, and V. Natarajan, Radiat. Phys. Chem. 174, 108956 (2020).

    CAS  Google Scholar 

  36. V.P. Singh and N.M. Badiger, Ann. Nucl. Energy 64, 301 (2014).

    CAS  Google Scholar 

  37. D. Demir and A. Turşucu, Ann. Nucl. Energy 48, 17 (2012).

    CAS  Google Scholar 

  38. D. Yılmaz, E. Boydaş, and E. Cömert, Radiat. Phys. Chem. 125, 65 (2016).

    Google Scholar 

  39. G. Lakshminarayana, A. Kumar, M.G. Dong, M.I. Sayyed, N.V. Long, and M.A. Mahdi, J. Non-Cryst, Solids 481, 65 (2018).

    CAS  Google Scholar 

  40. M.G. Dong, M.I. Sayyed, G. Lakshminarayana, M.Ç. Ersundu, A.E. Ersundu, P. Nayar, M.A. Mahdi, and J. Non-Cryst, Solids 468, 12 (2017).

    CAS  Google Scholar 

  41. M. Zhang, K. Lin, and J. Chang, Mater. Sci. Engg. C 32, 184 (2012).

    Google Scholar 

  42. K. Bennemans, C. Gorller-Walrand, and J.L. Adam, Chem. Phys. Lett. 280, 333 (1997).

    Google Scholar 

  43. V. Singh, S. Borkotoky, A. Murali, J.L. Rao, T.K.G. Rao, and S.J. Dhoble, Spectrochm. Acta A 139, 1 (2015).

    CAS  Google Scholar 

  44. V. Singh, G. Sivaramaiah, J.L. Rao, and S.H. Kim, Phys. B 416, 101 (2013).

    CAS  Google Scholar 

  45. P.V.V.M. Diederen, H. Weelden, C. Sanders, J. Toonstra, and W. Vloten, J. Am. Acad. Dermatol. 48, 215 (2003).

    Google Scholar 

  46. I.B. Walters, L.H. Burack, T.R. Coven, P. Gilleaudeau, and J.G. Krueger, J. Am. Acad. Dermatol. 40, 893 (1999).

    CAS  Google Scholar 

  47. S.-S. Yao, L.-H. Xue, Y.-W. Yan, Y.-Y. Li, and M.-F. Yan, J. Ceram. Process. Res. 11, 669 (2010).

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea Government (MSIT) (2018M2B2A9065656).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 351 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, V., Singh, N., Natarajan, V. et al. Ultraviolet Radiation-Emitting Gd3+-Doped Sr2ZnSi2O7 Host Lattice Prepared by Sol–Gel Procedure and Evaluation of Gamma-Ray Exposure Parameters. J. Electron. Mater. 50, 155–162 (2021). https://doi.org/10.1007/s11664-020-08549-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08549-1

Keywords

Navigation