Skip to main content
Log in

Investigation of NLO Properties of Eriochrome Black T Colloidal Solution: Role of Surfactant and Reverse Micelles

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The photophysical and nonlinear optical properties of Eriochrome Black T (EBT) in micelles, with two charge types of surfactant and reverse micelles (RMs) in a wide range of sizes, were investigated via ultraviolet–visible absorption, fluorescence spectroscopy, and a Z-scan technique. Accordingly, a significant redshift in absorbance and fluorescence quenching of the EBT was observed with an increase in cetyltrimethylammonium bromide (CTAB) concentration. Comparably, the nonlinear absorption coefficient (β) of the EBT decreased following an increase in cationic CTAB concentration, due to an increasing trend in the CTAB:EBT complex in the solution, and it decreased following an increase in anionic aerosol OT concentration. The same behavior was further detected for the nonlinear index of refraction (n2). The β value of the EBT also decreased with an increase in the size and concentration of the RMs, while the n2 was enhanced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.T. Buwalda and J.B.F.N. Engberts, Langmuir 17, 1054 (2001).

    Article  CAS  Google Scholar 

  2. S. Alehyen, F. Bensejjay, M.E. Achouri, L. Pérez, and M.R. Infante, J. Surf. Deterg. 13, 225 (2009).

    Article  Google Scholar 

  3. N.M. Khan and A. Sarwar, Fluid Phase Equilib. 239, 166 (2006).

    Article  Google Scholar 

  4. S. Gokturk, Photochem. Photobiol. A Chem. 169, 115 (2005).

    Article  Google Scholar 

  5. N. Barka, M. Abdennouri, and M.E. Makhfouk, J. Taiwan Inst. Chem. Eng. 42, 320 (2011).

    Article  CAS  Google Scholar 

  6. Q. Cheng, S.Z. Jiang, S.Q. Li, Y.X. Wang, C.Y. Zhang, and W.R. Yang, J. Appl. Poult. Res. 26, 367 (2017).

    Article  CAS  Google Scholar 

  7. A. Mittal and V.K. Gupta, Toxicol. Environ. Chem. 92, 1813 (2010).

    Article  CAS  Google Scholar 

  8. F.E. Hernandez, A.O. Marcano, Y. Alvarado, A. Biondi, and H. Maillotte, Opt. Commun. 152, 77 (1998).

    Article  CAS  Google Scholar 

  9. G.M. Carter, M.K. Thakar, Y.J. Chen, and J.V. Hryniewez, Appl. Phys. Lett. 47, 457 (1985).

    Article  CAS  Google Scholar 

  10. N.A.H. Al-Aaraji, A.O. Mousa, and B.A. Naser, J. Phys: Conf. Ser. 1234, 012036 (2019).

    CAS  Google Scholar 

  11. N.J. AbdulkadhimBan, A. NaserBan, A. Naser, and A.O. Mousa, J. Appl. Eng. Sci. 13, 9553 (2018).

    Google Scholar 

  12. M. Sheik-Bahae, A.A. Said, and E.W. Van Stryland, Opt. Lett. 14, 955 (1989).

    Article  CAS  Google Scholar 

  13. M. Sheik-Bahae, A.A. Said, T. Wei, D.J. Hagan, and E.W. Van Stryland, IEEE J. Quantum Electron. QE 26, 760 (1990).

    Article  CAS  Google Scholar 

  14. F.A. Zarif, S. Sharifi, G.S. Shurshalova, I. Rakhmatullin, V. Klochkov, A. Aganov, M. Behrouz, M.R. Sharif Moghadam, S. Mahdi Zadehd, and M. Khazaei Nezhada, Opt. Mater. 106, 109925 (2020).

    Article  CAS  Google Scholar 

  15. M. Hoseini, S. Sharifi, and A. Sazgarnia, J. Fluoresc. 30, 665 (2020).

    Article  CAS  Google Scholar 

  16. S. Sharifi, G.S. Shurshalova, A. Azarpour, F. Rakhshanizadeh, G. Zohuri, and M.R. Sharifmoghadam, J. Fluoresc. 29, 1331 (2019).

    Article  CAS  Google Scholar 

  17. H. Ghanadan, M. Hoseini, A. Sazgarnia, and S. Sharifi, J. Electron. Mater. 48, 7417 (2019).

    Article  CAS  Google Scholar 

  18. M. Hoseini, A. Sazgarnia, and S. Sharifi, Opt. Quant. Electron. 51, 144 (2019).

    Article  Google Scholar 

  19. S. Sharifi, M. Khazaei Nezhad, S.A. Sangsefedi, and F. Rakhshanizadeh, J. Electron. Mater. 48, 4310 (2019).

    Article  CAS  Google Scholar 

  20. K. Vahedi, S. Sharifi, K. Alizadeh, O. Marti, and M. Amirkhani, Opt. Quant. Electron. 50, 24 (2018).

    Article  Google Scholar 

  21. M. Pourtabrizi, N. Shahtahmassebi, A. Kompany, and S. Sharifi, Opt. Quant. Electron. 50, 13 (2018).

    Article  Google Scholar 

  22. S. Sharifi, G. Leisan Faritovna, and A. Azarpour, J. Fluoresc. 28, 1439 (2018).

    Article  CAS  Google Scholar 

  23. S. Peyghami, S. Sharifi, F. Rakhshanizadeh, and K. Alizadeh, J. Mol. Liq. 246, 157 (2017).

    Article  CAS  Google Scholar 

  24. S. Sharifi, K. Alizadeh, and S.M. Shavakandi, J. Mol. Liq. 247, 467 (2017).

    Article  CAS  Google Scholar 

  25. A. Azarpour, S. Sharifi, and F. Rakhshanizadeh, J. Mol. Liq. 252, 279 (2018).

    Article  CAS  Google Scholar 

  26. S. Sharifi, M. Faizan-Nazar, F. Rakhshanizadeh, S.A. Sangsefedi, and A. Azarpour, Opt. Quant. Electron. 52, 98 (2020). https://doi.org/10.1007/s11082-020-2211-3.

    Article  CAS  Google Scholar 

  27. M. Hoseini, A. Sazgarnia, and S. Sharifi, J. Fluoresc. 29, 531 (2019).

    Article  CAS  Google Scholar 

  28. A.S. Sangsefedi, S. Sharifi, H.R.M. Rezaion, and A. Azarpour, J. Fluoresc. 28, 815 (2018).

    Article  CAS  Google Scholar 

  29. N. Karimi, S. Sharifi, S.S. Parhizgar, and S.M. Elahi, Opt. Quantum Electron. 50, 1 (2018).

    CAS  Google Scholar 

  30. M. Pourtabrizi, N. Shahtahmassebi, A. Kompany, and S. Sharifi, J. Fluoresc. 28, 323 (2017).

    Article  Google Scholar 

  31. A.K. Satapathya, S.K. Beherac, A. Yadavd, L.N. Mahourd, C.V. Yelamaggade, K.L. Sandhyab, and B. Sahood, J. Lumin. 210, 371 (2019)

    Article  Google Scholar 

  32. A.K. Satapathy, S.K. Behera, R. Kumar, K.L. Sandhya, C.V. Yelamaggad, and B. Sahoo, J. Photochem. Photobiol. A Chem. 358, 186 (2018).

    Article  CAS  Google Scholar 

  33. T. Xia, M. Sheik-Bahae, A.A. Said, D.J. Hagan, and E.W. Van Stryland, J. Nonlinear Opt. Phys. Mater. 3, 489 (1994).

    Article  CAS  Google Scholar 

  34. M. Sheik-Bahae, A.A. Said, and E.W. Van Stryland, Opt. Lett. 14, 955 (1989).

    Article  CAS  Google Scholar 

  35. X. Zheng, Y. Zhang, R. Chen, X. Cheng, Z. Xu, and T. Jiang, Opt. Express 23, 15616 (2015).

    Article  CAS  Google Scholar 

  36. K. Sendhil, C. Vijayan, and M.P. Kothiyal, Opt. Laser Technol. 38, 512 (2006).

    Article  CAS  Google Scholar 

  37. R. Kumar, A. Kumar, N. Verma, A.V. Anupama, R. Philip, and B. Sahoo, Carbon 153, 545 (2019).

    Article  CAS  Google Scholar 

  38. R. Kumar, A. Kumar, N. Verma, R. Philip, and B. Sahoo, J. Alloys Compd 849, 1 (2020).

    Google Scholar 

  39. A. Kumar, R. Kumar, N. Verma, A.V. Anupama, H.K. Choudhary, R. Philip, and B. Sahoo, Opt. Mater. 108, 110163 (2020).

    Article  CAS  Google Scholar 

  40. R. Kumar, A. Kumar, N. Verma, V. Khopkar, R. Philip, and B. Sahoo, ACS Appl. Nano Mater. (2020). https://doi.org/10.1021/acsanm.0c01284.

    Article  Google Scholar 

Download references

Funding

This study was funded by Grant Number 2/51979.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narges Torabi.

Ethics declarations

Conflict of interest

Narges Torabi has received research grants from Ferdowsi University of Mashhad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torabi, N., Zarif, F.A. & Azarpour, A. Investigation of NLO Properties of Eriochrome Black T Colloidal Solution: Role of Surfactant and Reverse Micelles. J. Electron. Mater. 50, 640–648 (2021). https://doi.org/10.1007/s11664-020-08564-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08564-2

Keywords

Navigation