Skip to main content
Log in

Remote Preparation of General One-, Two- and Three-Qubit States via χ-Type Entangled States

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Employing the χ states, which are four-qubit genuine entangled states, we put forward three novel protocols for preparing general sing- two- and three-qubit state by using local operation and classical communication, and their probabilities of success achieve 100% by constructing sets of ingenious measurement bases at the sender’s locations. In the first scheme, after two single-qubit projective measurements performed by the sender, anyone of the three agents can reconstruct the original general single-qubi state with the help of other agents. In the second and third scheme, by implementing the two-step projective measurement under other novel sets of two-qubit measurement bases, the sender can help the receiver to prepare the general two- and three-qubit states respectively. After analyzing the resource consumption, the complexity of quantum operation, the success probability and the efficiency of these schemes, we find that the second and third scheme have more advantages than the existing similar scheme that employs χ-type state as quantum channel. In addition, it is pointed out that our schemes are safe and feasible with the support of current technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79(2), 325–328 (1997)

    Article  ADS  Google Scholar 

  2. Shor P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  3. Wang, M.M., Liu, J.L., Gong, L.M.: Semiquantum secure direct communication with authentication based on single-photons. Inter. J. Quantum Inform. 17(6), 1950024 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  4. Zhang, W., Ding, D.S., Sheng, Y.B., et al.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118(22), 220501 (2017)

    Article  ADS  Google Scholar 

  5. Sasaki, M.: Quantum key distribution and its applications. IEEE Secur. Priv. Magazine 16(5), 42–48 (2018)

    Article  Google Scholar 

  6. Chang, L.W., Zhang, Y.Q., Tian, X.X., et al.: Fault tolerant controlled quantum dialogue against collective noise. Chin. Phys. B 29(1), 010304 (2020)

    Article  ADS  Google Scholar 

  7. Feng, Y.Y., Shi, R.H., Shi, J.J., et al.: Arbitrated quantum signature scheme based on quantum walks. Acta Phsycia Sinica 68, 120302 (2019)

    Google Scholar 

  8. Peng, J.Y., He, Y.: Cyclic controlled remote implementation of partially unknown quantum operations. Inter. J. Theor. Phys. 58, 3065–3072 (2019)

    Article  MathSciNet  Google Scholar 

  9. Bennett, C.H., Brassard, G., Crepeau, C., et al.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70(13), 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  10. Luo, M.X., Li, H.R., Lai, H., Wang, X.: Teleportations of ququart systems using hyper-entangled photons assisted atomic-ensemble memories. Phys. Rev. A 93, 012332 (2016)

    Article  ADS  Google Scholar 

  11. Dong, L., Wang, J.X., Li, Q.Y., et al.: Teleportation of a general two-photon state employing a polarization-entangled χ state with nondemolition parity analyses. Quantum Inf. Proc. 15, 2955–2970 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  12. Peng, J.Y., He, Y.: Annular controlled teleportation. Inter. J. Theore. Phys. 58, 3271–3281 (2019)

    Article  MathSciNet  Google Scholar 

  13. Peng, J.Y., Bai, M.Q., Mo, Z.W.: Multicharacters remote rotation sharing with five-particle cluster state. Quantum Inf. Proc. 18, 339 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  14. Kang, S.Y., Chen, X.B., Yang, Y.X.: Multi-party quantum state sharing of an arbitrary multi-qubit state via χ-type entangled states. Quantum Inf. Proc. 13, 2081–2098 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  15. Rui, P.S., Zhang, W., Liao, Y.L.: Remote quantum information concentration via weak cross-Kerr nonlinearity. Int. J. Theor. Phys. 55, 4798–4808 (2016)

    Article  Google Scholar 

  16. Peng, J.Y., Bai, M.Q., Mo, Z.W.: Remote information concentration via W state: reverse of ancilla-free phase-covariant teleclong. Quantum Inf. Proc. 12, 3511–3525 (2013)

    Article  ADS  Google Scholar 

  17. Lo, H.K.: Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity. Phys. Rev. A 62, 012313 (2000)

    Article  ADS  Google Scholar 

  18. Peng, J.Y., Bai, M.Q., Mo, Z.W.: Bidirectional controlled joint remote state preparation. Quantum Inf. Proc. 14, 4263–4278 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  19. Zhang, P., Li, X., Ma, S.Y., et al.: Deterministic remote state preparation via the χ state. Commun. Theore. Phys. 67, 498–506 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  20. Branciard, C., Gisin, N., Pironio, S.: Characterizing the nonlocal correlations created via entanglement swapping. Phys. Rev. Lett. 104, 170401 (2010)

    Article  ADS  Google Scholar 

  21. Luo, M.X.: Computationally efficient nonlinear bell inequalities for quantum networks. Phys. Rev. Lett. 120(14), 140402 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  22. Luo, M.X.: Nonlocality of all the quantum networks. Phys. Rev A 98, 042317 (2018)

    Article  ADS  Google Scholar 

  23. Luo, M.X.: A nonlocal game for witnessing quantum networks. Npj Quantum Inform. 5(1), 91 (2019)

    Article  ADS  Google Scholar 

  24. Luo, M.X.: Nonsignaling causal hierarchy of general multisource networks. Phys. Rev. A 101, 062317 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  25. Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63(1), 014302 (2001)

    Article  ADS  Google Scholar 

  26. Wu, W., Liu, W.T., Chen, P.X., et al.: Deterministic remote preparation of pure and mixed polarization states. Phys. Rev. A 81, 042301 (2010)

    Article  ADS  Google Scholar 

  27. Peng, J.Y., Luo, M.X., Mo, Z.W.: Joint remote preparation of arbitrary two-particle states via GHZ-type states. Quantum Inf. Proc. 12, 2325–2342 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  28. Devetak, I., Berger, T.: Low-entanglement remote state preparation. Phys. Rev. Lett. 87, 197901 (2001)

    Article  ADS  Google Scholar 

  29. Berry, D.W., Sanders, B.C.: Optimal remote state preparation. Phys. Rev. Lett. 90, 057901 (2003)

    Article  ADS  Google Scholar 

  30. Kurucz, Z., Adam, P., Kis, Z., et al.: Continuous variable remote state preparation. Phys. Rev. A 72, 052315 (2005)

    Article  ADS  Google Scholar 

  31. Xia, Y., Song, J., Song, H.S.: Multiparty remote state preparation. J. Phys. B: At. Mol. Opt. Phys. 40(18), 3719–3724 (2007)

    Article  ADS  Google Scholar 

  32. Luo, M., Chen, X.B., Ma, S.Y., Yang, Y.X., Hu, Z.: Remote preparation of an arbitrary two-qubit state with three-party. Inter. J. Theor. Phys. 49, 1262–1273 (2010)

    Article  MathSciNet  Google Scholar 

  33. Peng, J.Y., Bai, M.Q., Mo, Z.W.: Joint remote state preparation of a four-dimensional quantum state. Chin. Phys. Lett. 31, 010301 (2014)

    Article  ADS  Google Scholar 

  34. Luo, M., Chen, X., Ma, S., Niu, X., Yang, Y.: Joint remote preparation of an arbitrary three-qubit state. Opt. Commun. 83, 4796–4801 (2010)

    Article  ADS  Google Scholar 

  35. An, N.B., Bich, C.T.: Perfect controlled joint remote state preparation independent of entanglement degree of the quantum channel. Phys. Lett. A 378(48), 3582–3585 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by Natural Science Foundation of China (Grant No. 11071178, 11671284) and Sichuan Province Education Department Scientific Research Innovation Team Foundation (NO. 15TD0027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia-Yin Peng.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, JY. Remote Preparation of General One-, Two- and Three-Qubit States via χ-Type Entangled States. Int J Theor Phys 59, 3789–3803 (2020). https://doi.org/10.1007/s10773-020-04632-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-020-04632-9

Keywords

Navigation