Skip to main content
Log in

Impact of acute exercise on immediate and following early post-exercise FGF-21 concentration in adults: systematic review and meta-analysis

  • Review Article
  • Published:
Hormones Aims and scope Submit manuscript

Abstract

Purpose/objective

The aim of this study was to quantify circulating fibroblast growth factor 21 (FGF-21) changes during and immediately after acute exercise and, based on body weight, to identify the subgroups exhibiting the largest response.

Methods

The PubMed, Web of Science, and Cochrane Library electronic databases were searched up to December 2019 for studies published in English peer-reviewed journals. Studies that evaluated the effects of acute exercise on FGF-21 concentrations immediately after and 1 and 3 h post-exercise in adults were included. Random effects models were used for analyses, with data reported as standardized mean difference (SMD) and 95% confidence interval, and the risk of heterogeneity was evaluated. Subgroup analysis of subjects with normal weight and obesity/overweight was performed.

Results

A total of seven studies involving 125 participants (age 35.95 (21–64) years and BMI 25.89 (21.30–35.46) kg/m2) were included. Overall, acute exercise increased FGF-21 (d = 0.18; 95% CI 0.01 to 0.35, p = 0.02) and this remained for 1 h post-exercise FGF-21 (d = 0.59; 95% CI 0.33 to 0.86, p = 0.001). Three hours after exercise, FGF-21 was restored to near baseline values (d = − 0.05; 95% CI − 0.34 to 0.22, p = 0.68). Acute exercise raised FGF-21 concentrations in normal weight participants (d = 0.57, p = 0.001) and tended to increase in overweight and obese participants (d = 0.79, p = 0.05) 1 h post-exercise.

Conclusion

Acute exercise increases circulating FGF-21, irrespective of body weight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3
Fig 4

Similar content being viewed by others

References

  1. Cuevas-Ramos D, Aguilar-Salinas CA (2016) Modulation of energy balance by fibroblast growth factor 21. Horm Mol Biol Clin Invest 30(1)

  2. Huang Z, Xu A, Cheung BM (2017) The potential role of fibroblast growth factor 21 in lipid metabolism and hypertension. Curr Hypertens Rep 19(4):28

    Article  PubMed  CAS  Google Scholar 

  3. BonDurant LD, Ameka M, Naber MC, Markan KR, Idiga SO, Acevedo MR, Walsh SA, Ornitz DM, Potthoff MJ (2017) FGF21 regulates metabolism through adipose-dependent and-independent mechanisms. Cell Metab 25(4):935–944. e934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cuevas-Ramos D, Almeda-Valdes P, Aguilar-Salinas CA, Cuevas-Ramos G, Cuevas-Sosa AA, Gomez-Perez FJ (2009) The role of fibroblast growth factor 21 (FGF21) on energy balance, glucose and lipid metabolism. Curr Diabetes Rev 5(4):216–220

    Article  CAS  PubMed  Google Scholar 

  5. Itoh N (2014) FGF21 as a hepatokine, adipokine, and myokine in metabolism and diseases. Front Endocrinol 5:107

    Article  Google Scholar 

  6. Singhal G, Chee MJ, Tan TG, El Ouaamari A, Adams AC, Najarian R, Kulkarni RN, Benoist C, Flier JS, Maratos-Flier E (2016) Fibroblast growth factor 21 (FGF21) protects against high fat diet induced inflammation and islet hyperplasia in pancreas. PLoS One 11(2):e0148252

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Fisher FM, Maratos-Flier E (2016) Understanding the physiology of FGF21. Annu Rev Physiol 78:223–241

    Article  CAS  PubMed  Google Scholar 

  8. Schlein C, Talukdar S, Heine M, Fischer AW, Krott LM, Nilsson SK, Brenner MB, Heeren J, Scheja L (2016) FGF21 lowers plasma triglycerides by accelerating lipoprotein catabolism in white and brown adipose tissues. Cell Metab 23(3):441–453

    Article  CAS  PubMed  Google Scholar 

  9. Cuevas-Ramos D, Mehta R, Aguilar-Salinas CA (2019) Fibroblast growth factor 21 and browning of white adipose tissue. Front Physiol 10:37–37

    Article  PubMed  PubMed Central  Google Scholar 

  10. Su X, Kong Y, Peng D (2019) Fibroblast growth factor 21 in lipid metabolism and non-alcoholic fatty liver disease. Clin Chim Acta 498:30–37

    Article  CAS  PubMed  Google Scholar 

  11. Badman MK, Pissios P, Kennedy AR, Koukos G, Flier JS, Maratos-Flier E (2007) Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab 5(6):426–437

    Article  CAS  PubMed  Google Scholar 

  12. Inagaki T, Dutchak P, Zhao G, Ding X, Gautron L, Parameswara V, Li Y, Goetz R, Mohammadi M, Esser V, Elmquist JK, Gerard RD, Burgess SC, Hammer RE, Mangelsdorf DJ, Kliewer SA (2007) Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21. Cell Metab 5(6):415–425

    Article  CAS  PubMed  Google Scholar 

  13. Lee MS, Choi SE, Ha ES, An SY, Kim TH, Han SJ, Kim HJ, Kim DJ, Kang Y, Lee KW (2012) Fibroblast growth factor-21 protects human skeletal muscle myotubes from palmitate-induced insulin resistance by inhibiting stress kinase and NF-kappaB. Metabolism 61(8):1142–1151

    Article  CAS  PubMed  Google Scholar 

  14. Oost LJ, Kustermann M, Armani A, Blaauw B, Romanello V (2019) Fibroblast growth factor 21 controls mitophagy and muscle mass. J Cachexia Sarcopenia Muscle 10(3):630–642

    Article  PubMed  PubMed Central  Google Scholar 

  15. Berti L, Irmler M, Zdichavsky M, Meile T, Böhm A, Stefan N, Fritsche A, Beckers J, Königsrainer A, Häring H-U (2015) Fibroblast growth factor 21 is elevated in metabolically unhealthy obesity and affects lipid deposition, adipogenesis, and adipokine secretion of human abdominal subcutaneous adipocytes. Mol Metab 4(7):519–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen C, Cheung BM, Tso AW, Wang Y, Law LS, Ong KL, Wat NM, Xu A, Lam KS (2011) High plasma level of fibroblast growth factor 21 is an Independent predictor of type 2 diabetes: a 5.4-year population-based prospective study in Chinese subjects. Diabetes Care 34(9):2113–2115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li H, Dong K, Fang Q, Hou X, Zhou M, Bao Y, Xiang K, Xu A, Jia W (2013) High serum level of fibroblast growth factor 21 is an independent predictor of non-alcoholic fatty liver disease: a 3-year prospective study in China. J Hepatol 58(3):557–563

    Article  CAS  PubMed  Google Scholar 

  18. Taniguchi H, Tanisawa K, Sun X, Higuchi M (2016) Acute endurance exercise lowers serum fibroblast growth factor 21 levels in Japanese men. Clin Endocrinol 85(6):861–867

    Article  CAS  Google Scholar 

  19. Sargeant JA, Aithal GP, Takamura T, Misu H, Takayama H, Douglas JA, Turner MC, Stensel DJ, Nimmo MA, Webb DR, Yates T, King JA (2018) The influence of adiposity and acute exercise on circulating hepatokines in normal-weight and overweight/obese men. Appl Physiol Nutr Metab 43(5):482–490

    Article  CAS  PubMed  Google Scholar 

  20. Slusher AL, Whitehurst M, Zoeller RF, Mock JT, Maharaj M, Huang CJ (2015) Attenuated fibroblast growth factor 21 response to acute aerobic exercise in obese individuals. Nutr Metab Cardiovasc Dis 25(9):839–845

    Article  CAS  PubMed  Google Scholar 

  21. Tanimura Y, Aoi W, Takanami Y, Kawai Y, Mizushima K, Naito Y, Yoshikawa T (2016) Acute exercise increases fibroblast growth factor 21 in metabolic organs and circulation. Phys Rep 4(12). https://doi.org/10.14814/phy2.12828

  22. Sabaratnam R, Pedersen AJT, Kristensen JM, Handberg A, Wojtaszewski JFP, Hojlund K (2018) Intact regulation of muscle expression and circulating levels of myokines in response to exercise in patients with type 2 diabetes. Phys Rep 6(12):e13723

    Article  CAS  Google Scholar 

  23. Willis SA, Sargeant JA, Thackray AE, Yates T, Stensel DJ, Aithal GP, King JA (2019) Effect of exercise intensity on circulating hepatokine concentrations in healthy men. Appl Physiol Nutr Metab 44(10):1065–1072

    Article  CAS  PubMed  Google Scholar 

  24. Morville T, Sahl RE, Trammell SA, Svenningsen JS, Gillum MP, Helge JW, Clemmensen C (2018) Divergent effects of resistance and endurance exercise on plasma bile acids, FGF19, and FGF21 in humans. JCI Insight 3(15)

  25. Pedersen BK (2019) Physical exercise in chronic diseases. In: Nutrition and skeletal muscle. Elsevier, pp 197–246

  26. Pedersen BK, Saltin B (2015) Exercise as medicine–evidence for prescribing exercise as therapy in 26 different chronic diseases. Scand J Med Sci Sports 25:1–72

    Article  PubMed  Google Scholar 

  27. Romero-Gómez M, Zelber-Sagi S, Trenell M (2017) Treatment of NAFLD with diet, physical activity and exercise. J Hepatol 67(4):829–846

    Article  PubMed  Google Scholar 

  28. Way KL, Hackett DA, Baker MK, Johnson NA (2016) The effect of regular exercise on insulin sensitivity in type 2 diabetes mellitus: a systematic review and meta-analysis. Diabetes Metab 40(4):253–271

    Article  Google Scholar 

  29. Oh S, Han G, Kim B, Shoda J (2018) Regular exercise as a secondary practical treatment for nonalcoholic fatty liver disease. Exerc Med 2

  30. Huh JY (2018) The role of exercise-induced myokines in regulating metabolism. Arch Pharm Res 41(1):14–29

    Article  CAS  PubMed  Google Scholar 

  31. Takahashi H, Alves CR, Stanford KI, Middelbeek RJ, Nigro P, Ryan RE, Xue R, Sakaguchi M, Lynes MD, So K (2019) TGF-β2 is an exercise-induced adipokine that regulates glucose and fatty acid metabolism. Nat Metab 1(2):291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. García-Hermoso A, Ceballos-Ceballos R, Poblete-Aro C, Hackney A, Mota J, Ramírez-Vélez R (2017) Exercise, adipokines and pediatric obesity: a meta-analysis of randomized controlled trials. Int J Obes 41(4):475–482

    Article  CAS  Google Scholar 

  33. Negaresh R, Motl RW, Mokhtarzade M, Dalgas U, Patel D, Shamsi MM, Majdinasab N, Ranjbar R, Zimmer P, Baker JS (2018) Effects of exercise training on cytokines and adipokines in multiple sclerosis: a systematic review. Mult Scler Relat Disord 24:91–100

    Article  PubMed  Google Scholar 

  34. Mika A, Macaluso F, Barone R, Di Felice V, Sledzinski T (2019) Effect of exercise on fatty acid metabolism and adipokine secretion in adipose tissue. Front Physiol 10

  35. Ennequin G, Sirvent P, Whitham M (2019) Role of exercise-induced hepatokines in metabolic disorders. Am J Physiol Endocrinol Metab 317(1):E11–E24

    Article  CAS  PubMed  Google Scholar 

  36. Sargeant JA (2018) Exercise and insulin sensitivity: interaction with intrahepatic triglyceride and hepatokines. Loughborough University

  37. Hoffmann C, Weigert C (2017) Skeletal muscle as an endocrine organ: the role of myokines in exercise adaptations. Cold Spring Harb Perspect Med 7(11):a029793

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Pedersen BK (2011) Exercise-induced myokines and their role in chronic diseases. Brain Behav Immun 25(5):811–816

    Article  CAS  PubMed  Google Scholar 

  39. Khalafi M, Mohebbi H, Symonds ME, Karimi P, Akbari A, Tabari E, Faridnia M, Moghaddami K (2020) The impact of moderate-intensity continuous or high-intensity interval training on adipogenesis and browning of subcutaneous adipose tissue in obese male rats. Nutrients 12(4):925

    Article  CAS  PubMed Central  Google Scholar 

  40. Shabkhiz F, Khalafi M, Rosenkranz S, Karimi P, Moghadami K (2020) Resistance training attenuates circulating FGF-21 and myostatin and improves insulin resistance in elderly men with and without type 2 diabetes mellitus: a randomized controlled clinical trial. Eur J Sport Sci:1–14

  41. Geng L, Liao B, Jin L, Huang Z, Triggle CR, Ding H, Zhang J, Huang Y, Lin Z, Xu A (2019) Exercise alleviates obesity-induced metabolic dysfunction via enhancing FGF21 sensitivity in adipose tissues. Cell Rep 26(10):2738–2752. e2734

    Article  CAS  PubMed  Google Scholar 

  42. Cuevas-Ramos D, Almeda-Valdés P, Meza-Arana CE, Brito-Córdova G, Gómez-Pérez FJ, Mehta R, Oseguera-Moguel J, Aguilar-Salinas CA (2012) Exercise increases serum fibroblast growth factor 21 (FGF21) levels. PLoS One 7(5)

  43. Kruse R, Vienberg SG, Vind BF, Andersen B, Højlund K (2017) Effects of insulin and exercise training on FGF21, its receptors and target genes in obesity and type 2 diabetes. Diabetologia 60(10):2042–2051

    Article  CAS  PubMed  Google Scholar 

  44. Yang W, Liu L, Wei Y, Fang C, Zhou F, Chen J, Han Q, Huang M, Tan X, Liu Q (2019) Exercise ameliorates the FGF21–adiponectin axis impairment in diet-induced obese mice. Endocr Connect 8(5):596–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang Y, Wang D, Liu Y, Zhang Y, Liu Y, Su Z, Luo T (2017) Impacts of chronic exercise on human blood fibroblast growth factor 21 levels in normal people: a meta-analysis. Biomed Res 28(13)

  46. Porter JW, Rowles JL, Fletcher JA, Zidon TM, Winn NC, McCabe LT, Park Y-M, Perfield JW, Thyfault JP, Rector RS (2017) Anti-inflammatory effects of exercise training in adipose tissue do not require FGF21. J Endocrinol 235(2):97–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kim KH, Kim SH, Min Y-K, Yang H-M, Lee J-B, Lee M-S (2013) Acute exercise induces FGF21 expression in mice and in healthy humans. PLoS One 8(5):e63517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. He Z, Tian Y, Valenzuela PL, Huang C, Zhao J, Hong P, He Z, Yin S, Lucia A (2018) Myokine response to high-intensity interval vs. resistance exercise: an individual approach. Front Physiol 9:1735

    Article  PubMed  PubMed Central  Google Scholar 

  49. Sargeant JA, Aithal GP, Takamura T, Misu H, Takayama H, Douglas JA, Turner MC, Stensel DJ, Nimmo MA, Webb DR (2017) The influence of adiposity and acute exercise on circulating hepatokines in normal-weight and overweight/obese men. Appl Physiol Nutr Metab 43(5):482–490

    Article  PubMed  CAS  Google Scholar 

  50. Hansen JS, Pedersen BK, Xu G, Lehmann R, Weigert C, Plomgaard P (2016) Exercise-induced secretion of FGF21 and follistatin are blocked by pancreatic clamp and impaired in type 2 diabetes. J Clin Endocrinol Metab 101(7):2816–2825

    Article  CAS  PubMed  Google Scholar 

  51. He Z, Tian Y, Valenzuela PL, Huang C, Zhao J, Hong P, He Z, Yin S, Lucia A (2019) Myokine/adipokine response to “aerobic” exercise: is it just a matter of exercise load? Front Physiol 10:691

    Article  PubMed  PubMed Central  Google Scholar 

  52. Cohen J (2013) Statistical power analysis for the behavioral sciences. Routledge

  53. Higgins JP, Green S (2011) Cochrane handbook for systematic reviews of interventions, vol 4. Wiley

  54. Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ (Clinical research ed) 315(7109):629–634

    Article  CAS  Google Scholar 

  55. Sterne JA, Egger M (2001) Funnel plots for detecting bias in meta-analysis: guidelines on choice of axis. J Clin Epidemiol 54(10):1046–1055

    Article  CAS  PubMed  Google Scholar 

  56. Dinoff A, Herrmann N, Swardfager W, Liu CS, Sherman C, Chan S, Lanctot KL (2016) The effect of exercise training on resting concentrations of peripheral brain-derived neurotrophic factor (BDNF): a meta-analysis. PLoS One 11(9)

  57. Dinoff A, Herrmann N, Swardfager W, Lanctot KL (2017) The effect of acute exercise on blood concentrations of brain-derived neurotrophic factor in healthy adults: a meta-analysis. Eur J Neurosci 46(1):1635–1646

    Article  PubMed  Google Scholar 

  58. Lee MS, Choi S-E, Ha ES, An S-Y, Kim TH, Han SJ, Kim HJ, Kim DJ, Kang Y, Lee K-W (2012) Fibroblast growth factor-21 protects human skeletal muscle myotubes from palmitate-induced insulin resistance by inhibiting stress kinase and NF-κB. Metabolism 61(8):1142–1151

    Article  CAS  PubMed  Google Scholar 

  59. Hecht R, Li Y-S, Sun J, Belouski E, Hall M, Hager T, Yie J, Wang W, Winters D, Smith S, Spahr C, Tam L-T, Shen Z, Stanislaus S, Chinookoswong N, Lau Y, Sickmier A, Michaels ML, Boone T, Véniant MM, Xu J (2012) Rationale-based engineering of a potent long-acting FGF21 analog for the treatment of type 2 diabetes. PLoS One 7(11):e49345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhen Eugene Y, Jin Z, Ackermann Bradley L, Thomas Melissa K, Gutierrez Jesus A (2016) Circulating FGF21 proteolytic processing mediated by fibroblast activation protein. Biochem J 5:605–614

    Article  CAS  Google Scholar 

  61. Hsuchou H, Pan W, Kastin AJ (2007) The fasting polypeptide FGF21 can enter brain from blood. Peptides 28(12):2382–2386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Brun J, Khaled S, Raynaud E, Bouix D, Micallef J, Orsetti A (1998) The triphasic effects of exercise on blood rheology: which relevance to physiology and pathophysiology? Clin Hemorheol Microcirc 19(2):89–104

    CAS  PubMed  Google Scholar 

  63. Gillen CM, Lee R, Mack GW, Tomaselli CM, Nishiyasu T, Nadel ER (1991) Plasma volume expansion in humans after a single intense exercise protocol. J Appl Physiol (1985) 71(5):1914–1920

    Article  CAS  Google Scholar 

  64. Ernst E, Daburger L, Saradeth T (1991) The kinetics of blood rheology during and after prolonged standardized exercise. Clin Hemorheol Microcirc 11(5):429–439

    Article  Google Scholar 

  65. Bloomer RJ, Farney TM (2013) Acute plasma volume change with high-intensity sprint exercise. J Strength Cond Res 27(10):2874–2878

    Article  PubMed  Google Scholar 

  66. Baker JS, Brock S, Dalleck L, Goulet E, Gotshall R, Hutchison A, Knight-Maloney M, Kravitz L, Laskin J, Lim Y, Lowery L, Marks DW, Mermier C, Robergs RA, Vella C, Wagner D, Wyatt F, Zhou B, Teixeira AO, Franco OS, Moraes M, Borges, Martins C, Guerreiro L, Carlos, Rosa E, Paulitsch F, Pérez W, Antônio, Silva MV, Signori LU (2014) The importance of adjustments for changes in plasma volume in the interpretation of hematological and inflammatory responses after resistance exercise. J Exerc Physiol Online 17(4)

  67. Xu X, Yu L, Chen Z (2008) Effect of erythrocyte aggregation on hematocrit measurement using spectral-domain optical coherence tomography. IEEE Trans Biomed Eng 55(12):2753–2758

    Article  PubMed  PubMed Central  Google Scholar 

  68. Yalcin O, Erman A, Muratli S, Bor-Kucukatay M, Baskurt OK (2003) Time course of hemorheological alterations after heavy anaerobic exercise in untrained human subjects. J Appl Physiol (1985) 94(3):997–1002

    Article  Google Scholar 

  69. Qiu S, Cai X, Sun Z, Schumann U, Zügel M, Steinacker JM (2015) Chronic exercise training and circulating irisin in adults: a meta-analysis. Sports Med 45(11):1577–1588

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the help of Dr. Yuko Tanimura (Aichi-toho University, Nagoya, Japan), Dr. Kumpei Tanisawa (Waseda University, Tokorozawa, Japan), Dr. A.L. Slusher (Florida Atlantic University, Boca Raton, FL, USA), Dr. James A King (Loughborough University, UK), Dr. Jack A Sargeant (Loughborough University, UK), Dr. Scott A. Willis (Loughborough University, Loughborough, UK), Dr. Christoffer Clemmensen (University of Copenhagen, Copenhagen, Denmark), and Dr. Rugivan Sabaratnam (University of Southern Denmark, Odense C, Denmark) for providing the relevant data.

Author information

Authors and Affiliations

Authors

Contributions

M Kh, K A, H N, and J V carried out the screenings and reviews. M Kh, K A, and M S carried out the analysis of the articles. M Kh, K A, and M S drafted and revised the manuscript. M S revised the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Mousa Khalafi or Karim Azali Alamdari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Fig 1.

Funnel plot of the trials involved in the meta-analysis of acute exercise effect on immediate post-exercise FGF-21 concentration (PNG 1413 kb)

High resolution image (TIF 26 kb)

Supplementary Fig 2.

Funnel plot of the trials involved in the meta-analysis of acute exercise effect on 1h post-exercise FGF-21 concentration (PNG 1277 kb)

High resolution image (TIF 10 kb)

Supplementary Fig 3.

Funnel plot of the trials involved in the meta-analysis of acute exercise effect on 3-hours post-exercise FGF-21 concentration (PNG 1277 kb)

High resolution image (TIF 9 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalafi, M., Alamdari, K.A., Symonds, M.E. et al. Impact of acute exercise on immediate and following early post-exercise FGF-21 concentration in adults: systematic review and meta-analysis. Hormones 20, 23–33 (2021). https://doi.org/10.1007/s42000-020-00245-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42000-020-00245-3

Keywords

Navigation