Skip to main content
Log in

A Density Functional Theory and Experimental Study of CO2 Photoreduction to Methanol over α-Sulfur-TiO2 Composite

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

CO2 reduction is an attractive way for the production of sustainable environment-friendly chemicals. Using the density functional theory employed by DMol3, we calculated the electronic properties of α-sulfur-modified surface of TiO2 (111). We report α-sulfur-TiO2 composite material for selective CO2 reduction to methanol. The α-sulfur-TiO2 catalyst showed higher adsorption for CO2 molecule (reactant) and lower adsorption for methanol (product) as compared to TiO2 catalyst. The introduction of the α-sulfur molecule in the TiO2 catalyst leads to redistribution of the lowest unoccupied molecular orbital (LUMO) and the highest occupied molecular orbital (HOMO). The DFT studies showed that the α-sulfur-TiO2 catalyst reduced the band gap to 2.06 eV from 2.88 (α-sulfur) and 3.2 eV (TiO2). The experimental study was done using photoelectrochemical CO2 reduction. The sulfur-TiO2 catalyst showed higher methanol production (17 mM/h) under visible light as compared to α-sulfur catalyst (8.5 mM/h).

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P.M. Vitousek, H.A. Mooney, J. Lubchenco, J.M. Melillo, Human domination of Earth's ecosystems. Science 277(5325), 494–499 (1997)

    Article  CAS  Google Scholar 

  2. W.-H. Wang, Y. Himeda, J.T. Muckerman, G.F. Manbeck, E. Fujita, CO2 hydrogenation to formate and methanol as an alternative to photo-and electrochemical CO2 reduction. Chem. Rev. 115(23), 12936–12973 (2015)

    Article  CAS  Google Scholar 

  3. C.D. Windle, R.N. Perutz, Advances in molecular photocatalytic and electrocatalytic CO2 reduction. Coord. Chem. Rev. 256(21–22), 2562–2570 (2012)

    Article  CAS  Google Scholar 

  4. T.F. Hurst, T.T. Cockerill, N.H. Florin, Life cycle greenhouse gas assessment of a coal-fired power station with calcium looping CO 2 capture and offshore geological storage. Energy Environ. Sci. 5(5), 7132–7150 (2012)

    Article  CAS  Google Scholar 

  5. S. Sato, T. Arai, T. Morikawa, Toward solar-driven photocatalytic CO2 reduction using water as an electron donor. Inorg. Chem. 54(11), 5105–5113 (2015)

    Article  CAS  Google Scholar 

  6. S.N. Habisreutinger, L. Schmidt-Mende, J.K. Stolarczyk, Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew. Chem. Int. Ed. 52(29), 7372–7408 (2013)

    Article  CAS  Google Scholar 

  7. A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358), 37 (1972)

    Article  CAS  Google Scholar 

  8. K.R. Thampi, J. Kiwi, M. Graetzel, Methanation and photo-methanation of carbon dioxide at room temperature and atmospheric pressure. Nature 327(6122), 506 (1987)

    Article  CAS  Google Scholar 

  9. B. Kumar, M. Llorente, J. Froehlich, T. Dang, A. Sathrum, C.P. Kubiak, Photochemical and photoelectrochemical reduction of CO2. Annu. Rev. Phys. Chem. 63(1), 541–569 (2012)

    Article  CAS  Google Scholar 

  10. R. Yadav, H. Singh, A.K. Sinha, Ultra-fine size-controlled Pt (111) nanoparticles supported on mesoporous titania as an efficient photoelectrocatalyst for hydrogen evolution. Appl. Surf. Sci. 495, 143525 (2019)

    Article  CAS  Google Scholar 

  11. A.G. Tamirat, W.-N. Su, A.A. Dubale, H.-M. Chen, B.-J. Hwang, Photoelectrochemical water splitting at low applied potential using a NiOOH coated codoped (Sn, Zr) α-Fe 2 O 3 photoanode. J. Mater. Chem. A 3(11), 5949–5961 (2015)

    Article  CAS  Google Scholar 

  12. H. Yan, X. Wang, M. Yao, X. Yao, Band structure design of semiconductors for enhanced photocatalytic activity: The case of TiO2. Progress in Natural Science: Materials International 23(4), 402–407 (2013)

    Article  CAS  Google Scholar 

  13. F. Wang, W.K.H. Ng, C.Y. Jimmy, H. Zhu, C. Li, L. Zhang, Z. Liu, Q. Li, Red phosphorus: An elemental photocatalyst for hydrogen formation from water. Appl. Catal. B Environ. 111, 409–414 (2012)

    Article  CAS  Google Scholar 

  14. Z. Kang, C.H.A. Tsang, N.-B. Wong, Z. Zhang, S.-T. Lee, Silicon quantum dots: A general photocatalyst for reduction, decomposition, and selective oxidation reactions. J. Am. Chem. Soc. 129(40), 12090–12091 (2007)

    Article  CAS  Google Scholar 

  15. G. Liu, P. Niu, L. Yin, H.-M. Cheng, α-Sulfur crystals as a visible-light-active photocatalyst. J. Am. Chem. Soc. 134(22), 9070–9073 (2012)

    Article  CAS  Google Scholar 

  16. R. Yadav, A.K. Sinha, Titania cowrapped α-sulfur composite as a visible light active photocatalyst for hydrogen evolution using in situ methanol from CO2 as a sacrificial agent. ACS Sustain. Chem. Eng. 5(8), 6736–6745 (2017)

    Article  CAS  Google Scholar 

  17. E. Szaniawska, K. Bienkowski, I.A. Rutkowska, P.J. Kulesza, R. Solarska, Enhanced photoelectrochemical CO2-reduction system based on mixed Cu2O–nonstoichiometric TiO2 photocathode. Catal. Today 300, 145–151 (2018)

    Article  CAS  Google Scholar 

  18. A. Nakada, T. Uchiyama, N. Kawakami, G. Sahara, S. Nishioka, R. Kamata, H. Kumagai, O. Ishitani, Y. Uchimoto, K. Maeda, Solar water oxidation by a visible-light-responsive tantalum/nitrogen-codoped rutile titania anode for photoelectrochemical water splitting and carbon dioxide fixation. ChemPhotoChem 3(1), 37–45 (2019)

    Article  CAS  Google Scholar 

  19. B. O'regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353(6346, 1991), 737

  20. M. Grätzel, Photoelectrochemical cells. Nature 414(6861), 338 (2001)

    Article  Google Scholar 

  21. D.E. Hammerschmidt, Breath hydrogen and lactose intolerance. The Journal of Laboratory and Clinical Medicine 144(6), 279 (2004)

    Google Scholar 

  22. U. Wollenberger, A. Drungiliene, W. Stöcklein, J.J. Kulys, F.W. Scheller, Direct electrocatalytic determination of dissolved peroxidases. Anal. Chim. Acta 329(3), 231–237 (1996)

    Article  CAS  Google Scholar 

  23. S. Liu, A. Chen, Coadsorption of horseradish peroxidase with thionine on TiO2 nanotubes for biosensing. Langmuir 21(18), 8409–8413 (2005)

    Article  CAS  Google Scholar 

  24. S. Banerjee, S.C. Pillai, P. Falaras, K.E. O’shea, J.A. Byrne, D.D. Dionysiou, New insights into the mechanism of visible light photocatalysis. The journal of physical chemistry letters 5(15), 2543–2554 (2014)

    Article  CAS  Google Scholar 

  25. M.V. Dozzi, E. Selli, Doping TiO2 with p-block elements: Effects on photocatalytic activity. J Photochem Photobiol C: Photochem Rev 14, 13–28 (2013)

    Article  CAS  Google Scholar 

  26. P. Periyat, S.C. Pillai, D.E. McCormack, J. Colreavy, S.J. Hinder, Improved high-temperature stability and sun-light-driven photocatalytic activity of sulfur-doped anatase TiO2. J. Phys. Chem. C 112(20), 7644–7652 (2008)

    Article  CAS  Google Scholar 

  27. B. Qi, Y. Yu, X. He, L. Wu, X. Duan, J. Zhi, Series of transition metal-doped TiO2 transparent aqueous sols with visible-light response. Mater. Chem. Phys. 135(2–3), 549–553 (2012)

    Article  CAS  Google Scholar 

  28. N. Serpone, D. Lawless, J. Disdier, J.-M. Herrmann, Spectroscopic, photoconductivity, and photocatalytic studies of TiO2 colloids: Naked and with the lattice doped with Cr3+, Fe3+, and V5+ cations. Langmuir 10(3), 643–652 (1994)

    Article  CAS  Google Scholar 

  29. M.K. Seery, R. George, P. Floris, S.C. Pillai, Silver doped titanium dioxide nanomaterials for enhanced visible light photocatalysis. J. Photochem. Photobiol. A Chem. 189(2–3), 258–263 (2007)

    Article  CAS  Google Scholar 

  30. I. Arabatzis, T. Stergiopoulos, M. Bernard, D. Labou, S. Neophytides, P. Falaras, Silver-modified titanium dioxide thin films for efficient photodegradation of methyl orange. Appl. Catal. B Environ. 42(2), 187–201 (2003)

    Article  CAS  Google Scholar 

  31. I. Thomann, B.A. Pinaud, Z. Chen, B.M. Clemens, T.F. Jaramillo, M.L. Brongersma, Plasmon enhanced solar-to-fuel energy conversion. Nano Lett. 11(8), 3440–3446 (2011)

    Article  CAS  Google Scholar 

  32. J.S. DuChene, B.C. Sweeny, A.C. Johnston-Peck, D. Su, E.A. Stach, W.D. Wei, Prolonged hot electron dynamics in plasmonic-metal/semiconductor heterostructures with implications for solar photocatalysis. Angew. Chem. Int. Ed. 53(30), 7887–7891 (2014)

    Article  CAS  Google Scholar 

  33. A.O. Govorov, H. Zhang, H.V. Demir, Y.K. Gun’ko, Photogeneration of hot plasmonic electrons with metal nanocrystals: Quantum description and potential applications. Nano Today 9(1), 85–101 (2014)

    Article  CAS  Google Scholar 

  34. C. Clavero, Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nature Photonics 8(2), 95 (2014)

    Article  CAS  Google Scholar 

  35. P. Christopher, H. Xin, S. Linic, Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nature chemistry 3(6), 467 (2011)

    Article  CAS  Google Scholar 

  36. F. Tran, P. Blaha, Importance of the kinetic energy density for band gap calculations in solids with density functional theory. J. Phys. Chem. A 121(17), 3318–3325 (2017)

    Article  CAS  Google Scholar 

  37. B. Bharti, S. Kumar, H.-N. Lee, R. Kumar, Formation of oxygen vacancies and Ti 3+ state in TiO 2 thin film and enhanced optical properties by air plasma treatment. Sci. Rep. 6(1), 32355 (2016)

    Article  CAS  Google Scholar 

  38. R. Yadav, V. Amoli, J. Singh, M.K. Tripathi, P. Bhanja, A. Bhaumik, A.K. Sinha, Plasmonic gold deposited on mesoporous TixSi1− xO2 with isolated silica in lattice: An excellent photocatalyst for photocatalytic conversion of CO2 into methanol under visible light irradiation. Journal of CO2 Utilization 27, 11–21 (2018)

    Article  CAS  Google Scholar 

  39. K. Baluja, P. Burke, A. Kingston, Electron impact excitation of semi-forbidden transitions in O III. Journal of Physics B: Atomic and Molecular Physics 13(4), 829 (1980)

    Article  CAS  Google Scholar 

  40. J. Simonetti, D.S. McClure, The 3 d→ 4 p transitions of Cu+ in LiCl and of transition-metal ions in crystals. Physical Review B 16(9), 3887 (1977)

    Article  CAS  Google Scholar 

  41. Y. Toda, H. Hirayama, N. Kuganathan, A. Torrisi, P.V. Sushko, H. Hosono, Activation and splitting of carbon dioxide on the surface of an inorganic electride material. Nat. Commun. 4(1), 2378 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

RY and AM are thankful to the Council of Scientific and Industrial Research (CSIR), New Delhi, India, for the research fellowship. VV thanked the Department of Science and Technology (DST), New Delhi, India, for INSPIRE research fellowship. NP and AK thanked the CSIR-Indian Institute of Petroleum (IIP), Dehradun, India, for the research funding.

Author information

Authors and Affiliations

Authors

Contributions

The work plan was demonstrated by RY and AKS. RY contributed in performing the experimental reactions and DFT calculation. AM, VV, AK, NP, and HS helped in the catalyst synthesis and characterization. The manuscript was co-written by RY and AKS. All authors have approved the final version of the manuscript.

Corresponding author

Correspondence to Anil Kumar Sinha.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 3374 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, R., Singh, G., Mishra, A. et al. A Density Functional Theory and Experimental Study of CO2 Photoreduction to Methanol over α-Sulfur-TiO2 Composite. Electrocatalysis 12, 56–64 (2021). https://doi.org/10.1007/s12678-020-00631-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-020-00631-w

Keywords

Navigation