Skip to main content
Log in

Hybrids containing zirconium and phosphorus compounds obtained by sol-gel method

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In the present work, novel organic-inorganic hybrids containing zirconium and phosphorus compounds were synthesized by using the sol-gel method, starting from zirconyl chloride hexahydrate (ZrOCl2·6H2O) and phenyl phosphonic acid (PPA). All the syntheses were performed at room temperature by using water as solvent. For some of the performed syntheses, alcohols with long hydrocarbon chain (n = 4–8) were added to the sol-gel process. They behave as nonionic surfactants due to their hydrophobic and hydrophilic groups, and they decrease the surface tension but without micelles formation, therefore without reaching CMC (critical micellar concentration). At a certain concentration, they will phase separate. This leads to the formation of a liquid/liquid interface. When the used alcohols were more hydrophobic, the obtained interface was more stable. This helped the synthesis and significantly changed its kinetics, as follows: in water, the chemical reaction was finished in 6 h, but when heptanol or octanol were added, the reaction time decreased to 3 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Alberti G, Costantino U (1992) In: Atwood JL et al (eds) Inclusion compounds. Oxford University Press

  2. Jang MY, Yamazaki Y (2004) Preparation, characterization and proton conductivity of membrane based on zirconium tricarboxybutylphosphonate and polybenzimidazole for fuel cells. Solid State Ionics 167:107–112. https://doi.org/10.1016/j.ssi.2003.12.003

    Article  CAS  Google Scholar 

  3. Alberti G, Casciola M, Donnadio A, Piaggio P, Pica M, Sisani M (2005) Preparation and characterisation of α-layered zirconium phosphate sulfophenylenphosphonates with variable concentration of sulfonic groups. Solid State Ionics 176:2893–2898. https://doi.org/10.1016/j.ssi.2005.09.042

    Article  CAS  Google Scholar 

  4. Hogarth WHJ, Diniz da Costa JC, Max Lu GQ (2005) Solid acid membranes for high temperature (140°C) proton exchange membrane fuel cells. J Power Sources 142:223–237. https://doi.org/10.1016/j.jpowsour.2004.11.020

    Article  CAS  Google Scholar 

  5. Clearfield A (2000) Inorganic ion exchangers, past, present, and future. Solvent Extr Ion Exch 18:655–678. https://doi.org/10.1080/07366290008934702

    Article  CAS  Google Scholar 

  6. Xu ZP, Jin Y, Diniz da Costa JC, Max Lu GQ (2008) Zr(HPO4)2 based organic/inorganic nanohybrids as new proton conductors. Solid State Ionics 178:1654–1659. https://doi.org/10.1016/j.ssi.2007.10.020

    Article  CAS  Google Scholar 

  7. Mar Gómez-Alcántara M, Cabeza A, Martínez-Lara M, Aranda MAG, Suau R, Bhuvanesh N, Clearfield A (2004) Synthesis and characterization of a new bisphosphonic acid and several metal hybrids derivatives. Inorg Chem 43:5283–5293. https://doi.org/10.1021/ic049453l

    Article  CAS  PubMed  Google Scholar 

  8. Patel H, Chudasama U (2006) A comparative study of proton transport properties of zirconium(IV) phosphonates. Bull Mater Sci 29:665–671

    Article  CAS  Google Scholar 

  9. Judeinstein P, Sanchez C (1996) Hybrid organic-inorganic materials: a land of multidisciplinarity. J Mater Chem 6:511–525. https://doi.org/10.1039/JM9960600511

    Article  CAS  Google Scholar 

  10. Mutin PH, Guerrero G, Alauzun JG (2015) Sol-gel processing of phosphonate-based organic-inorganic hybrid materials. J Ceram Soc Jpn 123:709–713. https://doi.org/10.2109/jcersj2.123.709

    Article  CAS  Google Scholar 

  11. Simulescu V, Crasmareanu E, Ilia G (2011) Synthesis, properties and structures of phosphorus–nitrogen heterocycles. Heterocycles 83:275–291. https://doi.org/10.3987/REV-10-685

    Article  CAS  Google Scholar 

  12. Sanchez C, Lebeau B, Ribot F, In M (2000) Molecular design of sol-gel derived hybrid organic-inorganic nanocomposites. J Sol-Gel Sci Technol 19:31–38. https://doi.org/10.1023/A:1008753919925

    Article  CAS  Google Scholar 

  13. Evans DF, Wennerström H (1994) The colloidal domain - where physics, chemistry, biology, and technology meet. VCH, New York

    Google Scholar 

  14. Drehe M, Simulescu V, Ilia G (2008) Progress in the development of flame retardants. Rev Chem Eng 24:263–302. https://doi.org/10.1515/REVCE.2008.24.6.263

    Article  CAS  Google Scholar 

  15. Yazawa T, Shojo T, Mineshige A, Yusa S, Kobune M, Kuraoka K (2008) Solid electrolyte membranes based on polyvinyl phosphonic acid and alkoxysilane for intermediate-temperature fuel cells. Solid State Ionics 178:1958–1962. https://doi.org/10.1016/j.ssi.2007.12.078

    Article  CAS  Google Scholar 

  16. Sanchez C, Julian B, Belleville P, Popall M (2005) Applications of hybrid organic–inorganic nanocomposites. J Mater Chem 15:3559–3592. https://doi.org/10.1039/B509097K

    Article  CAS  Google Scholar 

  17. Wight AP, Davis ME (2002) Design and preparation of organic-inorganic hybrid catalysts. Chem Rev 102:3589–3614. https://doi.org/10.1021/cr010334m

    Article  CAS  PubMed  Google Scholar 

  18. Ilia G, Simulescu V, Mak CA, Crasmareanu E (2014) The use of transesterification method for obtaining phosphorus-containing polymers. Adv Polym Techol 33:21437. https://doi.org/10.1002/adv.21437

    Article  CAS  Google Scholar 

  19. Schubert U (2005) Chemical modification of titanium alkoxides for sol-gel processing. J Mater Chem 15:3701–3715. https://doi.org/10.1039/B504269K

    Article  CAS  Google Scholar 

  20. Alberti G, Costantino U, Allulli S, Tomassini N (1978) Crystalline Zr(R-PO3)2 and Zr(R-OPO3)2 compounds (R = organic radical): a new class of materials having layered structure of the zirconium phosphate type. J Inorg Nucl Chem 40:1113–1117. https://doi.org/10.1016/0022-1902(78)80520-X

    Article  CAS  Google Scholar 

  21. Mutin PH, Guerrero G, Vioux A (2005) Hybrid materials from organophosphorus coupling molecules. J Mater Chem 15:3761–3768. https://doi.org/10.1039/B505422B

    Article  CAS  Google Scholar 

  22. Derjaguin BV, Churaev NV, Muller VM (1987) In: Kitchener JA (ed) In surface forces. Consultants Bureau, New York

    Chapter  Google Scholar 

  23. Derjaguin BV, Landau L (1941) Theory of the stability of strongly charged lyophobic sols and the adhesion of strongly charged particles in solutions of electrolytes. Acta Phys Chim 14:633–662

    Google Scholar 

  24. Verwey E, Overbeek J (1948) Theory of the stability of lyophobic colloids. Elsevier, Amsterdam

    Google Scholar 

  25. Clearfield A (2012) In: Clearfield A, Demadis K (eds) Metal phosphonate chemistry: from synthesis to applications. Royal Society of Chemistry

  26. Gagnon KJ, Perry HP, Clearfield A (2012) Conventional and unconventional metal-organic frameworks based on phosphonate ligands: MOFs and UMOFs. Chem Rev 112:1034–1054. https://doi.org/10.1021/cr2002257

    Article  CAS  PubMed  Google Scholar 

  27. Guerrero G, Mutin PH, Vioux A (2000) Mixed nonhydrolytic/hydrolytic sol-gel routes to novel metal oxide/phosphonate hybrids. Chem Mater 12:1268–1272. https://doi.org/10.1021/cm991125+

    Article  CAS  Google Scholar 

  28. Vasylyev MV, Wachtel EJ, Popovitz-Biro R, Neumann R (2006) Titanium phosphonate porous materials constructed from dendritic tetraphosphonates. Chem Eur J 12:3507–3514. https://doi.org/10.1002/chem.200501143

    Article  CAS  PubMed  Google Scholar 

  29. Vasylyev M, Neumann R (2006) Preparation, characterizaton, and catalytic aerobic oxidation by a vanadium phosphonate mesoporous material constructed from a dendritic tetraphosphonate. Chem Mater 18:2781–2783. https://doi.org/10.1021/cm0603506

    Article  CAS  Google Scholar 

  30. Zhu Y-P, Ma T-Y, Liu Y-L, Ren T-Z, Yuan Z-Y (2014) Metal phosphonate hybrid materials: from densely layered to hierarchically nanoporous structures. Inorg Chem Front 1:360–383. https://doi.org/10.1039/C4QI00011K

    Article  CAS  Google Scholar 

  31. Mutin PH, Delenne C, Medoukali D, Corriu R, Vioux A (1998) Introduction of organic moieties into transition-metal oxide matrices via phosphonate groups. Mater Res Soc Symp Proc 519:345–350. https://doi.org/10.1557/PROC-519-345

    Article  CAS  Google Scholar 

  32. Guerrero G, Mutin PH, Vioux A (2001) Organically modified aluminas by grafting and sol–gel processes involving phosphonate derivatives. J Mater Chem 11:3161–3165. https://doi.org/10.1039/B104411G

    Article  CAS  Google Scholar 

  33. Mutin PH, Guerrero G, Vioux A (2003) Organic-inorganic hybrid materials based on organophosphorus coupling molecules: from metal phosphonates to surface modification of oxides. C R Chim 6:1153–1164. https://doi.org/10.1016/j.crci.2003.07.006

    Article  CAS  Google Scholar 

  34. Ma T-Y, Liu L, Deng Q-F, Lin X-Z, Yuan Z-Y (2011) Increasing the H+ exchange capacity of porous titanium phosphonate materials by protecting defective P-OH groups. Chem Commun 47:6015–6017. https://doi.org/10.1039/C1CC11583A

    Article  CAS  Google Scholar 

  35. Ma T-Y, Zhang X-J, Shao G-S, Cao J-L, Yuan Z-Y (2008) Ordered macroporous titanium phosphonate materials: synthesis, photocatalytic activity, and heavy metal ion adsorption. J Phys Chem C 112:3090–3096. https://doi.org/10.1021/jp710636x

    Article  CAS  Google Scholar 

  36. Lin X-Z, Ren T-Z, Yuan Z-Y (2015) Mesoporous zirconium phosphonate materials as efficient water-tolerable solid acid catalysts. Catal Sci Technol 5:1485–1494. https://doi.org/10.1039/C4CY01110D

    Article  CAS  Google Scholar 

  37. Zhu Y-P, Liu Y-L, Ren T-Z, Yuan Z-Y (2014) Hollow manganese phosphonate microspheres with hierarchical porosity for efficient adsorption and separation. Nanoscale 6:6627–6636. https://doi.org/10.1039/C4NR00629A

    Article  CAS  PubMed  Google Scholar 

  38. Ma T-Y, Lin X-Z, Zhang X-J, Yuan Z-Y (2011) Hierarchical mesostructured titanium phosphonates with unusual uniform lines of macropores. Nanoscale 3:1690–1696. https://doi.org/10.1039/c0nr00841a

    Article  CAS  PubMed  Google Scholar 

  39. Mehring M, Lafond V, Mutin PH, Vioux A (2003) New sol-gel routes to organic-inorganic hybrid materials: modification of metal alkoxide by phosphonic or phosphinic acids. J Sol-Gel Sci Technol 26:99–102. https://doi.org/10.1023/A:1020797520620

    Article  CAS  Google Scholar 

  40. Ma T-Y, Yuan Z-Y (2010) Organic-additive-assisted synthesis of hierarchically meso-/macroporous titanium phosphonates. Eur J Inorg Chem 2941–2948. https://doi.org/10.1002/ejic.201000204

  41. Ma T-Y, Yuan Z-Y (2011) Metal phosphonate hybrid mesostructures: environmentally friendly multifunctional materials for clean energy and other applications. Chem Sus Chem 4:1407–1419. https://doi.org/10.1002/cssc.201100050

    Article  CAS  Google Scholar 

  42. Zhu Y-P, Ren T-Z, Yuan Z-Y (2015) Co2+-loaded periodic mesoporous aluminum phosphonates for efficient modified Fenton catalysis. RSC Adv 5:7628–7636. https://doi.org/10.1039/C4RA15032E

    Article  CAS  Google Scholar 

  43. Ma T-Y, Yuan Z-Y (2010) Functionalized periodic mesoporous titanium phosphonate monoliths with large ion exchange capacity. Chem Commun 46:2325–2327. https://doi.org/10.1039/B920964F

    Article  CAS  Google Scholar 

  44. Zhu Y-P, Ma T-Y, Ren T-Z, Li J, Du G-H, Yuan Z-Y (2014) Highly dispersed photoactive zinc oxide nanoparticles on mesoporous phosphonated titania hybrid. Appl Catal B 156:44–52. https://doi.org/10.1016/j.apcatb.2014.03.001

    Article  CAS  Google Scholar 

  45. Guizard C, Bac A, Barboiu M, Hovnanian N (2001) Hybrid organic-inorganic membranes with specific transport properties, Applications in separation and sensors technologies. Sep Purif Technol 25:167–180. https://doi.org/10.1016/S1383-5866(01)00101-0

    Article  CAS  Google Scholar 

  46. Maillet C, Janvier P, Bertrand M-J, Praveen T, Bujoli B (2002) Phosphonate-based hybrid materials for catalysis? Supported rhodium/2,2′-bipyridine complexes as reduction catalysts under hydrogen pressure. Eur J Org Chem 1685-1689. https://doi.org/10.1002/1099-0690(200205)2002:10<1685::AID-EJOC1685>3.0.CO;2-I

  47. Maillet C, Janvier P, Pipelier M, Praveen T, Andres Y, Bujoli B (2001) Hybrid materials for catalysis? Design of new phosphonate-based supported catalysts for the hydrogenation of ketones under hydrogen pressure. Chem Mater 13:2879–2884. https://doi.org/10.1021/cm010123y

    Article  CAS  Google Scholar 

  48. Lin X-Z, Yuan Z-Y (2012) Synthesis of mesoporous zirconium organophosphonate solid-acid catalysts. Eur J Inorg Chem 2012:2661–2664. https://doi.org/10.1002/ejic.201101064

    Article  CAS  Google Scholar 

  49. Ma TY, Qiao SZ (2014) Acid-base bifunctional periodic mesoporous metal phosphonate materials for synergistically and heterogeneously catalyzing CO2 conversion. ACS Catal 4:3847–3855. https://doi.org/10.1021/cs501124d

    Article  CAS  Google Scholar 

  50. Ma T-Y, Lin X-Z, Yuan Z-Y (2010) Cubic mesoporous titanium phosphonates with multifunctionality. Chem Eur J 16:8487–8494. https://doi.org/10.1002/chem.201000364

    Article  CAS  PubMed  Google Scholar 

  51. Pramanik M, Bhaumik A (2014) Self-assembled hybrid molybdenum phosphonate porous nanomaterials and their catalytic activity for the synthesis of benzimidazoles. Chem Cat Chem 6:2577–2586. https://doi.org/10.1002/cctc.201402291

    Article  CAS  Google Scholar 

  52. Zhu Y-P, Liu Y-L, Ren T-Z, Yuan Z-Y (2014) Mesoporous nickel phosphate/phosphonate hybrid microspheres with excellent performance for adsorption and catalysis. RSC Adv 4:16018–16021. https://doi.org/10.1039/C4RA01466A

    Article  CAS  Google Scholar 

  53. Ma T-Y, Lin X-Z, Yuan Z-Y (2010) Periodic mesoporous titanium phosphonate hybrid materials. J Mater Chem 20:7406–7415. https://doi.org/10.1039/C0JM01442G

    Article  CAS  Google Scholar 

  54. Kato M, Katayama S, Sakamoto W, Yogo T (2007) Synthesis of organosiloxane-based inorganic/organic hybrid membranes with chemically bound phosphonic acid for proton-conductors. Electrochim Acta 52:5924–5931. https://doi.org/10.1016/j.electacta.2007.03.031

    Article  CAS  Google Scholar 

  55. Kato M, Sakamoto W, Yogo T (2008) Proton-conductive sol-gel membranes from phenylvinylphosphonic acid and organoalkoxysilanes with different functionalities. J Membr Sci 311:182–191. https://doi.org/10.1016/j.memsci.2007.12.013

    Article  CAS  Google Scholar 

  56. Gheonea R, Crasmareanu E, Plesu N, Sauca S, Simulescu V, Ilia G (2017) New hybrid materials synthesized with different dyes by sol-gel method. Hindawi Publishing Corporation, Adv in Mat Sci and Eng. https://doi.org/10.1155/2017/4537039

  57. Sedev R, Exerova D (1999) DLVO and non-DLVO surface forces in foam films from amphiphilic block copolymers. Adv Colloid Interface Sci 83:111–136. https://doi.org/10.1016/S0001-8686(99)00007-X

    Article  CAS  Google Scholar 

Download references

Funding

We acknowledge the Research Program 2, Project 2.1, from the Institute of Chemistry “Coriolan Dragulescu” for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gheorghe Ilia or Vasile Simulescu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilia, G., Simulescu, V. & Hulka, I. Hybrids containing zirconium and phosphorus compounds obtained by sol-gel method. Colloid Polym Sci 299, 137–151 (2021). https://doi.org/10.1007/s00396-020-04780-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-020-04780-8

Keywords

Navigation